Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1285-1295    DOI: 10.3785/j.issn.1008-973X.2024.06.018
    
Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion
Kang HAN(),Hongfei ZHAN*(),Junhe YU,Rui WANG
Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China
Download: HTML     PDF(3215KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The traditional convolutional neural network (CNN) has the limitations of insufficiently extracting features from the original vibration signals and requiring a larger sensory field to fully capture the temporal correlation of the signals in the process of extracting the features when recognizing the fault types. A dilated convolution and enhanced multi-scale adaptive feature fusion model (DC-MAFFM) was proposed considering the inherent multi-scale characteristics of bearing vibration signals. The signal features were extracted using the large receptive field of the dilated convolution, and the residual connection was introduced to reduce the information loss on the convolution layer, so as to effectively filter the noise in the signal. An improved multi-scale feature extraction module was designed to capture complementary diagnostic features at different scales, meanwhile, the different-scale feature fusion was performed at each layer to fully learn the high-frequency and low-frequency features of the signal. The proposed feature adaptive fusion module was used to adaptively assign weights to the features at different scales to enhance the ability of discriminative feature learning. Verification was carried out on two bearing datasets, and results showed that the proposed model had strong diagnostic ability under noise and variable working conditions. In the case of strong noise, the fault diagnosis accuracy reached 88.08% and 75.56%, respectively, which demonstrated that the DC-MAFFM had a significant advantage over other methods.



Key wordsfault diagnosis      dilated convolution      residual connection      multi-scale feature extraction      adaptive fusion     
Received: 10 June 2023      Published: 25 May 2024
CLC:  TP 181  
Fund:  国家自然科学基金资助项目(71671097); 国家重点研发计划资助项目(2019YFB1707101, 2019YFB1707103); 浙江省省属高校基本科研业务费资助项目(SJLZ2023001); 浙江省公益技术应用研究计划资助项目(LGG20E050010).
Corresponding Authors: Hongfei ZHAN     E-mail: 846253284@qq.com;zhanhongfei@nbu.edu.cn
Cite this article:

Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1285


基于空洞卷积和增强型多尺度特征自适应融合的滚动轴承故障诊断

传统卷积神经网络(CNN)在识别故障类型时存在从原始振动信号中提取特征不足以及提取特征过程中需要更大的感受野以充分捕获信号的时间相关性的局限. 针对轴承振动信号固有的多尺度特征,提出基于空洞卷积和增强型多尺度自适应特征融合的模型(DC-MAFFM). 利用空洞卷积的大感受野提取信号特征,同时引入残差连接来减少卷积层上的信息损失,从而有效过滤信号中的噪声;设计改进的多尺度特征提取模块,在不同尺度上捕获互补的诊断特征,同时在各层都进行不同尺度特征融合,充分学习信号的高频和低频特征;利用提出的特征自适应融合模块对不同尺度的特征自适应赋予权重,增强判别特征学习的能力. 在2个轴承数据集上进行验证,结果表明所提模型在噪声和变工况下有较强的诊断能力. 在强噪声情况下,故障诊断准确率分别达到88.08%和75.56%,与其他方法相比有显著优势.


关键词: 故障诊断,  空洞卷积,  残差连接,  多尺度特征提取,  自适应融合 
Fig.1 Model based on dilated convolution and enhanced multi-scale feature adaptive fusion
Fig.2 Dilated convolution module
Fig.3 Dilated convolution block (i=0, 1, 2)
Fig.4 Schematic diagram of residual connection
Fig.5 Improved multi-scale feature extraction module
Fig.6 Adaptive feature fusion module
结构参数
空洞卷积模块W=9,C=16
池化层S=2,C=16
多尺度特征提取模块m=11,n=7,k=3,a=32,b=16,c=8
自适应特征融合模块v=5,d=2
FC1输入节点数=8192,输出节点数=1024
FC2输入节点数=1024,输出节点数=10
Tab.1 Parameters of each module of DC-MAFFM model
Fig.7 Bearing test bench and schematic diagram
故障类别D/cmNtrainNtest
正常0333142
外圈故障10.0178333142
外圈故障20.0356333142
外圈故障30.0533333142
内圈故障40.0178333142
内圈故障50.0356333142
内圈故障60.0533333142
滚动体故障70.0178333142
滚动体故障80.0356333142
滚动体故障90.0533333142
Tab.2 12 k drive end bearing datasets
Fig.8 Original vibration signal curve
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6646±0.01450.8195±0.01480.8892±0.03000.9236±0.03330.9706±0.0177
WDCNN[15]0.5968±0.01060.7578±0.03640.8665±0.01710.9499±0.00940.9701±0.0172
MSCNN[16]0.7605±0.03520.8549±0.04430.9195±0.02260.9493±0.02510.9774±0.0104
DC0.6346±0.02140.8108±0.01580.8900±0.01390.9410±0.01100.9754±0.0091
Resnet[17]0.7485±0.01110.8654±0.00960.9336±0.00510.9703±0.00640.9904±0.0017
DRSN-CS[18]0.7928±0.01510.8665±0.01930.9423±0.00190.9755±0.01070.9875±0.0059
MA1DCNN[19]0.8019±0.03740.8744±0.02290.9076±0.01400.9537±0.02320.9836±0.0122
DC-MAFFM0.8808±0.00090.9346±0.00730.9639±0.00910.9848±0.00650.9992±0.0010
Tab.3 Accuracy rates of 8 models under different noises for 12k driving end bearing data
故障类别D/cmNsam
L=0 WL=745.7 WL=1491.4 WL=2237.1 W
正常0118118118118
外圈故障10.0178118118118118
外圈故障20.0356118118118118
外圈故障30.0533118118118118
内圈故障40.0178118118118118
内圈故障50.0356118118118118
内圈故障60.0533118118118118
滚动体故障70.0178118118118118
滚动体故障80.0356118118118118
滚动体故障90.0533118118118118
Tab.4 12k fan end bearing datasets
任务名称Ntrain1Ntest1
A10、1、23
A20、1、32
A30、2、31
A41、2、30
Tab.5 Task information of fan end bearing under variable working conditions
模 型A
A1A2A3A4
MSCNN-LSTM[14]0.74590.95920.91850.7799
WDCNN[15]0.81190.89880.86020.8242
MSCNN[16]0.89470.92800.95810.8508
DC0.87710.91500.85350.8062
Resnet[17]0.93380.98420.89700.9102
DRSN-CS[18]0.99820.99280.93180.9027
MA1DCNN[19]0.89530.91060.94590.7685
DC-MAFFM0.99770.99990.99830.9447
Tab.6 Accuracy of 8 models under variable working conditions
故障类型NtrainNtestNsam
正常09243961320
外圈故障1307132439
内圈故障2307132439
滚动体故障3307132439
Tab.7 Description of Jiangnan University bearing dataset
模 型A
SNR=4SNR=6SNR=8SNR=10SNR=12
MSCNN-LSTM[14]0.6710±0.04020.7157±0.02080.7939±0.01980.8509±0.02160.9107±0.0080
WDCNN[15]0.6396±0.01610.6969±0.01490.7223±0.02290.7703±0.02760.8193±0.0197
MSCNN[16]0.6785±0.01020.6985±0.00990.7497±0.00740.8032±0.00780.8164±0.0143
DC0.6527±0.02120.7164±0.01150.7654±0.01510.8191±0.01820.8544±0.0126
Resnet[17]0.7106±0.01550.7552±0.01160.8231±0.00910.8559±0.00220.9072±0.0084
DRSN-CS[18]0.7437±0.01130.7920±0.01380.8476±0.01550.8760±0.02870.9096±0.0250
MA1DCNN[19]0.6783±0.04740.7597±0.03350.8238±0.01660.8723±0.02700.9172±0.0280
DC-MAFFM0.7556±0.00420.8040±0.00630.8555±0.00980.9077±0.00470.9351±0.0048
Tab.8 Accuracy of 8 models on Jiangnan University data under different noise
任务名称Ntrain1Ntest1
B1600、1000800
B2600、8001000
B3800、1000600
Tab.9 Task information for Jiangnan University data under varying working conditions
模 型A
B1B2B3
MSCNN-LSTM[14]0.86720.81340.7568
WDCNN[15]0.79970.71080.7392
MSCNN[16]0.78420.69350.7317
DC0.83840.75530.7046
Resnet[17]0.86450.82870.7457
DRSN-CS[18]0.90060.84220.7483
MA1DCNN[19]0.86920.80520.7705
DC-MAFFM0.90480.84590.8071
Tab.10 Accuracy of 8 models under noise and variable working conditions
模 型A
A1A2A3A4
M10.97710.90030.99750.8206
M20.98630.99670.99790.9136
M30.99240.99860.99740.8986
M40.99720.99740.99680.9062
M50.99730.99890.99760.9301
M60.99760.99990.99830.9447
Tab.11 Ablation study of key parts of proposed model
[1]   PHAM M T, KIM J M, KIM C H Rolling bearing fault diagnosis based on improved GAN and 2-D representation of acoustic emission signals[J]. IEEE Access, 2022, 10: 78056- 78069
doi: 10.1109/ACCESS.2022.3193244
[2]   肖雄, 肖宇雄, 张勇军, 等 基于二维灰度图的数据增强方法在电机轴承故障诊断的应用研究[J]. 中国电机工程学报, 2021, 41 (2): 738- 749
XIAO Xiong, XIAO Yuxiong, ZHANG Yongjun, et al Research on the application of data enhancement method based on two-dimensional grayscale map in motor bearing fault diagnosis[J]. Proceedings of the CSEE, 2021, 41 (2): 738- 749
[3]   李世晓, 杜锦华, 龙云 基于一维卷积神经网络的机电作动器故障诊断[J]. 电工技术学报, 2022, 37 (Suppl.1): 62- 73
LI Shixiao, DU Jinhua, LONG Yun Fault diagnosis of electromechanical actuators based on one-dimensional convolutional neural network[J]. Transactions of China Electrotechnical Society, 2022, 37 (Suppl.1): 62- 73
[4]   WU C, JIANG P, DING C, et al Intelligent fault diagnosis of rotating machinery based on one-dimensional convolutional neural network[J]. Computers in Industry, 2019, 108: 53- 61
doi: 10.1016/j.compind.2018.12.001
[5]   YE Z, YU J AKSNet: a novel convolutional neural network with adaptive kernel width and sparse regularization for machinery fault diagnosis[J]. Journal of Manufacturing Systems, 2021, 59: 467- 480
doi: 10.1016/j.jmsy.2021.03.022
[6]   SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Boston: IEEE, 2015: 1−9.
[7]   RAVIKUMAR K N, YADAV A, KUMAR H, et al Gearbox fault diagnosis based on multi-scale deep residual learning and stacked LSTM model[J]. Measurement, 2021, 186: 110099
doi: 10.1016/j.measurement.2021.110099
[8]   XIAO Y, SHAO H, MIN Z, et al Multiscale dilated convolutional subdomain adaptation network with attention for unsupervised fault diagnosis of rotating machinery cross operating conditions[J]. Measurement, 2022, 204: 112146
doi: 10.1016/j.measurement.2022.112146
[9]   LIANG H, CAO J, ZHAO X Multi-scale dynamic adaptive residual network for fault diagnosis[J]. Measurement, 2022, 188: 110397
doi: 10.1016/j.measurement.2021.110397
[10]   BOROVYKH A, BOHTE S, OOSTERLEE C W. Conditional time series forecasting with convolutional neural networks [EB/OL]. (2018-09-17). [2023-01-02]. https://arxiv.org/abs/1703.04691.
[11]   WANG P, CHEN P, YUAN Y, et al. Understanding convolution for semantic segmentation [C]// 2018 IEEE Winter Conference on Applications of Computer Vision . Lake Tahoe: IEEE, 2018: 1451-1460.
[12]   HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks [C]// Computer Vision-ECCV . Amsterdam: Springer, 2016: 630−645.
[13]   HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 7132−7141.
[14]   CHEN X, ZHANG B, GAO D Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971- 987
doi: 10.1007/s10845-020-01600-2
[15]   ZHANG W, PENG G, LI C, et al A new deep learning model for fault diagnosis with good anti-noise and domain adaptation ability on raw vibration signals[J]. Sensors, 2017, 17 (2): 425
doi: 10.3390/s17020425
[16]   JIANG G, HE H, YAN J, et al Multiscale convolutional neural networks for fault diagnosis of wind turbine gearbox[J]. IEEE Transactions on Industrial Electronics, 2018, 66 (4): 3196- 3207
[17]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770−778.
[18]   ZHAO M, ZHONG S, FU X, et al Deep residual shrinkage networks for fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (7): 4681- 4690
[19]   WANG H, LIU Z, PENG D, et al Understanding and learning discriminant features based on multiattention 1DCNN for wheelset bearing fault diagnosis[J]. IEEE Transactions on Industrial Informatics, 2019, 16 (9): 5735- 5745
[20]   SMITH W A, RANDALL R B Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64: 100- 131
[1] Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU. Compound fault decoupling diagnosis method based on improved Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 855-864.
[2] Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.
[3] Zhu-peng WEN,Jie CHEN,Lian-hua LIU,Ling-ling JIAO. Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(6): 1212-1219.
[4] Xiao-ping YUAN,Xiang HE,Xiao-qian WANG,Yang-ming HU. Image segmentation algorithm based on multi-level feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 1958-1966.
[5] Jing HUANG,Shu-yuan ZHONG,Yuan-qiao WEN,Kun LUO. Adaptive graph generation jump network for traffic flow prediction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(10): 1825-1833.
[6] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[7] Jing-jing LIN,Yan-xia SHEN. Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1815-1825.
[8] Chang-zhen XIONG,Run-ling WANG,Jian-cheng ZOU. Real-time tracking algorithm based on multiple Gaussian-distribution correlation filters[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(8): 1488-1495.
[9] Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.
[10] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[11] GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1223-1230.
[12] YU Jian-bo, LI Chuan-feng, LV Jing-xiang. Average combination difference morphological filter analysis on fault signals of rolling bearing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1845-1853.
[13] ZHU Wen-ying, FENG Zhi-peng. Analysis of planetary gear vibration signal based on iterated Hilbert transform[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1587-1595.
[14] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1499-1506.
[15] CHEN Chen,LI Xiao run. Fault diagnosis method of circuit breaker operating mechanism based on coil current analysis[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 527-535.