Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (6): 1275-1284    DOI: 10.3785/j.issn.1008-973X.2024.06.017
    
Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail
Yifei LUO(),Bin HU,Xin ZHAO*(),Zefeng WEN
State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China
Download: HTML     PDF(2808KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A transient rolling contact finite element model using ANSYS/LS-DYNA was developed based on the parameters of the wheel-rail rolling behavior (WRRB) test rig, in order to study the rolling contact and wear characteristics of scaled wheel-ring rail. The elastic creepage solving program and wear model were integrated in the model, and the model was verified by experiment. The wheel-rail force, creepage, contact stress and rail wear depth were investigated, and the influences of wheel driving torque and speed were analyzed. The results showed that, the vertical wheel-rail force fluctuation was caused by the high frequency elastic vibration of the scaled wheel-ring rail structure. The longitudinal dynamic behavior and rail wear depth change trend were consistent with those of in-service wheel-rail under proportional load. Due to the small curve radius of the ring rail, the creep force and rate, the spin creepage and the rail wear depth under free rolling condition were large, and the peak value of tangential contact stress appeared on both sides behind the contact patch. The influence rules of wheel driving torque and speed can be fitted into a set of empirical formulas. The research can provide a theoretical basis for the design and application of this kind of test rig.



Key wordsscaled wheel-ring rail      explicit finite element method      transient rolling contact      creep      wear     
Received: 04 June 2023      Published: 25 May 2024
CLC:  U 211.5  
Fund:  国家自然科学基金资助项目(52027807);四川省国际科技创新合作资助项目(2021YFH0006);牵引动力国家重点实验室自主课题资助项目(2020TPL_T06).
Corresponding Authors: Xin ZHAO     E-mail: isaacxy22@163.com;xinzhao@swjtu.edu.cn
Cite this article:

Yifei LUO,Bin HU,Xin ZHAO,Zefeng WEN. Rolling contact and wear characteristics simulation analysis of scaled wheel-ring rail. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1275-1284.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.06.017     OR     https://www.zjujournals.com/eng/Y2024/V58/I6/1275


缩尺车轮-环轨滚动接触与磨耗特性仿真分析

为了研究缩尺车轮-环轨滚动接触与磨耗特性,基于轮轨滚动行为(WRRB)模拟试验台参数,利用ANSYS/LS-DYNA建立瞬态滚动接触有限元模型,集成弹性蠕滑率求解程序和磨耗模型,通过试验验证模型的正确性. 重点分析轮轨力、蠕滑率、接触应力和钢轨磨耗深度,并考虑车轮驱动扭矩和速度的影响规律. 结果表明:缩尺车轮-环轨结构的高频弹性振动造成轮轨垂向力波动;在比例载荷作用下,纵向动力学行为和钢轨磨耗深度变化趋势与服役轮轨一致;由于环轨的极小曲线半径,自由滚动工况下的横向蠕滑力/率、自旋蠕滑率、钢轨磨耗深度偏大,切向接触应力峰值出现在接触斑后沿两侧;车轮驱动扭矩和速度的影响规律可拟合为一组经验公式. 研究可以为此类试验台的设计与应用工作提供理论依据.


关键词: 缩尺车轮-环轨,  显式有限元法,  瞬态滚动接触,  蠕滑,  磨耗 
Fig.1 Wheel-rail rolling behavior test rig
Fig.2 Transient rolling contact finite element model of scaled wheel-ring rail
参数取值
车轮名义滚动圆直径/m0.35
钢轨曲线半径/m1.6
轨枕间距/m0.21
轨枕支承长度/m0.043
轨底坡1∶40
黏着系数0.5
车轮质量/kg40.7
回转台转动惯量/(kg·m2)223.5
轮轨材料密度/(kg·m?3)7 790
轮轨材料弹性模量/MPa205 900
轮轨材料泊松比0.3
轮轨材料阻尼常数1.0×10?4
基座材料密度/(kg·m?3)7 850
基座材料弹性模量/MPa210 000
基座材料泊松比0.3
基座材料阻尼常数1.0×10?4
轨下橡胶垫刚度系数/(MN·m?1)5.05
轨下橡胶垫阻尼系数/(kN·s·m?1)12.78
Tab.1 Parameters of wheel-ring rail transient rolling contact finite element model
Fig.3 Simulation and experimental results of wheel-rail force in time domain
Fig.4 Rotation speeds and creepages of wheel and ring-rail in time domain
Fig.5 Quasi-steady contact patch under free rolling contact
Fig.6 Distribution characteristics of rail wear depth
Fig.7 Wheel-rail force versus wheel driving torque
Fig.8 Wheel-rail contact stress versus wheel driving torque
Fig.9 Mean value of wheel-rail creepage versus wheel driving torque
Fig.10 Mean value of rail wear depth versus wheel driving torque
Fig.11 Wheel-rail force versus speed
Fig.12 Contact stress versus speed
Fig.13 Mean value of wheel-rail creepage versus speed
Fig.14 Mean value of rail wear depth versus speed
[1]   金学松, 刘启跃. 轮轨摩擦学[M]. 北京: 中国铁道出版社, 2004.
[2]   张鹏, 赵鑫, 凌亮, 等 轮轨高频动力作用模拟中接触模型的影响分析[J]. 机械工程学报, 2020, 56 (12): 124- 132
ZHANG Peng, ZHAO Xin, LING Liang, et al Influence of contact modeling on numerical analyses of high frequency wheel-rail interactions[J]. Journal of Mechanical Engineering, 2020, 56 (12): 124- 132
doi: 10.3901/JME.2020.12.124
[3]   于淼. 高速铁路轨道-车辆系统高频瞬态仿真及波磨机理研究[D]. 北京: 中国铁道科学研究院, 2019.
YU Miao. Transient simulation for high-speed track/vehicle system and study on rail corrugation [D]. Beijing: China Academy of Railway Sciences, 2019.
[4]   CUI X, CHENG Z, YANG Z, et al Study on the phenomenon of rail corrugation on high-speed rail based on the friction-induced vibration and feedback vibration[J]. Vehicle System Dynamics, 2020, 60 (2): 413- 432
[5]   SUDA Y, KOMINE H, IWASA T, et al Experimental study on mechanism of rail corrugation using corrugation simulator[J]. Wear, 2002, 253 (1/2): 162- 171
[6]   ZENG D, XU T, LIU W, et al Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446/447 (C): 1- 9
[7]   赵相吉, 马蕾, 郭俊, 等 干-水态下圆形硌伤对钢轨材料滚动接触疲劳特性影响[J]. 摩擦学学报, 2017, 37 (4): 544- 550
ZHAO Xiangji, MA Lei, GUO Jun, et al The effect of round defects on rolling contact fatigue characteristics of rail materials under dry-wet conditions[J]. Journal of Tribology, 2017, 37 (4): 544- 550
[8]   ZANI N, PETROGALLI C Predictive maps for the rolling contact fatigue and wear interaction in railway wheel steels[J]. Wear, 2022, 510/511: 204513
doi: 10.1016/j.wear.2022.204513
[9]   WANG Y, XIANG P, DING H, et al Effects of molybdenum addition on rolling contact fatigue of locomotive wheels under rolling-sliding condition[J]. Materials, 2020, 13 (19): 4282
doi: 10.3390/ma13194282
[10]   ZHOU L, WANG W, HU Y, et al Study on the wear and damage behaviors of hypereutectoid rail steel in low temperature environment[J]. Wear, 2020, 456/457: 203365
doi: 10.1016/j.wear.2020.203365
[11]   周宇, 王钲, 卢哲超, 等 钢轨滚动接触疲劳裂纹萌生和磨耗共存预测方法验证[J]. 同济大学学报:自然科学版, 2021, 49 (3): 411- 420
ZHOU Yu, WANG Zheng, LU Zhechao, et al Verification of prediction method for coexistence of rolling contact fatigue crack initiation and wear growth in rail[J]. Journal of Tongji University: Natural Science, 2021, 49 (3): 411- 420
[12]   汪登荣, 倪文波, 王雪梅, 等 新型轮轨关系试验台研究[J]. 铁道机车车辆, 2012, 32 (2): 53- 57
WANG Dengrong, NI Wenbo, WANG Xuemei, et al Research on a new wheel-rail test rig[J]. Railway Locomotive and Car, 2012, 32 (2): 53- 57
[13]   NAEIMI M, LI Z, PETROV R, et al Development of a new downscale setup for wheel-rail contact experiments under impact loading conditions[J]. Experimental Techniques, 2017, 42 (1): 1- 17
[14]   ZHU J, THOMPSON J, JONES C On the effect of unsupported sleepers on the dynamic behaviour of a railway track[J]. Vehicle System Dynamics, 2011, 49 (9): 1389- 1408
doi: 10.1080/00423114.2010.524303
[15]   YANG Z, ZHANG P, MORAAL J, et al An experimental study on the effects of friction modifiers on wheel-rail dynamic interactions with various angles of attack[J]. Railway Engineering Science, 2022, 30 (3): 360- 382
doi: 10.1007/s40534-022-00285-y
[16]   NAEIMI M, LI Z, DOLLEVOET R Scaling strategy of a new experimental rig for wheel-rail contact[J]. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2014, 8 (12): 1787- 1794
[17]   NAEIMI M, LI Z, PETROV R, et al Substantial fatigue similarity of a new small-scale test rig to actual wheel-rail system[J]. International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 2014, 8 (12): 1830- 1838
[18]   温泽峰, 马启文, 金学松, 等. 轮轨滚动行为模拟试验台: CN107917817A [P]. 2018-04-17.
[19]   赵鑫, 温泽峰, 王衡禹, 等 三维高速轮轨瞬态滚动接触有限元模型及其应用[J]. 机械工程学报, 2013, 49 (18): 1- 7
ZHAO Xin, WEN Zefeng, WANG Hengyu, et al 3D transient finite element model for high-speed wheel-rail rolling contact and its application[J]. Journal of Mechanical Engineering, 2013, 49 (18): 1- 7
doi: 10.3901/JME.2013.18.001
[20]   王晗, 刘超, 赵鑫, 等 单轮对高速滚动试验台的动态有限元模拟研究[J]. 电力机车与城轨车辆, 2015, 38 (3): 16- 19
WANG Han, LIU Chao, ZHAO Xin, et al Simulation research of dynamic finite element based on single wheel set high speed rolling test rig[J]. Electric Locomotives and Mass Transit Vehicles, 2015, 38 (3): 16- 19
[21]   ARIAS-CUEVAS O, LI Z, LEWIS R Rolling-sliding laboratory tests of friction modifiers in dry and wet wheel-rail contacts[J]. Wear, 2010, 268 (3): 543- 551
[22]   刘启跃 钢轨的安定状态研究[J]. 西南交通大学学报, 1995, 30 (4): 466- 471
LIU Qiyue Research on stable state of rail[J]. Journal of Southwest Jiaotong University, 1995, 30 (4): 466- 471
[23]   KALKER J J A fast algorithm for the simplified theory of rolling contact[J]. Vehicle System Dynamics, 1982, 11 (1): 1- 13
doi: 10.1080/00423118208968684
[24]   JENDEL T Prediction of wheel profile wear–comparisons with field measurements[J]. Wear, 2002, 253 (1): 89- 99
[25]   ARIZON J D, VERLINDEN O, DEHOMBREAUX P Prediction of wheel wear in urban railway transport: comparison of existing models[J]. Vehicle System Dynamics, 2007, 45 (9): 849- 866
doi: 10.1080/00423110601149335
[26]   POMBO J, AMBROSIO J, PEREIRA M, et al Development of a wear prediction tool for steel railway wheels using three alternative wear functions[J]. Wear, 2011, 271 (1/2): 238- 245
[27]   LEWIS R, DWYER-JOYCE R S Wear mechanisms and transitions in railway wheel steels[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218 (6): 467- 478
[28]   VUONG T T, MEEHAN P A Wear transitions in a wear coefficient model[J]. Wear, 2009, 266 (9): 898- 906
[29]   ZHAO X, ZHANG P, WEN Z On the coupling of the vertical, lateral and longitudinal wheel-rail interactions at high frequencies and the resulting irregular wear[J]. Wear, 2019, 430/431: 317- 326
doi: 10.1016/j.wear.2019.05.017
[30]   BOSSO N, SPIRYAGIN M, GUGLIOTTA A, et al. Mechatronic modeling of real-time wheel-rail contact [M]. Berlin: Springer, 2013.
[31]   康熙, 陈光雄, 吕金洲, 等 缩尺轮轨模型中钢轨波磨的相似性[J]. 西南交通大学学报, 2020, 55 (6): 1320- 1327
KANG Xi, CHEN Guangxiong, LV Jinzhou, et al Similarity study of small-scale wheelset-track model for investigation of rail corrugation[J]. Journal of Southwest Jiaotong University, 2020, 55 (6): 1320- 1327
[32]   罗易飞, 赵鑫, 周志军, 等 缩尺车轮-环轨试验台轮轨静态接触相似性研究[J]. 中南大学学报:自然科学版, 2022, 53 (10): 3901- 3911
LUO Yifei, ZHAO Xin, ZHOU Zhijun, et al Static contact similarity analysis of a scaled test rig wheel on rail track ring[J]. Journal of Central South University: Science and Technology, 2022, 53 (10): 3901- 3911
[33]   寇峻瑜. 基于显式有限元法的高速车轮多边形动态响应分析[D]. 成都: 西南交通大学, 2018.
KOU Junyu. Analysis on dynamic responses of polygonized wheel of high-speed train using explicit FE method [D]. Chengdu: Southwest Jiaotong University, 2018.
[34]   谢毅, 寇峻瑜, 姜梅, 等 中国铁路发展概况与技术展望[J]. 高速铁路技术, 2020, 11 (1): 11- 16
XIE Yi, KOU Junyun, JIANG Mei, et al Development and technical prospect of China Railway[J]. High Speed Railway Technology, 2020, 11 (1): 11- 16
[1] Zhuo-feng LI,Ming-hui SUN. Hand gesture/state recognition based on inertial measurement unit at high sample rate[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 503-511.
[2] Jie WANG,Zhao LI,Zi-ran LI. Research on tread wear behavior of all steel radial truck tire[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1615-1624.
[3] Xun CHENG,Jian-bo YU. Monitoring method for machining tool wear based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 896-904.
[4] Teng ZHANG,Xin-long JIANG,Yi-qiang CHEN,Qian CHEN,Tao-mian MI,Piu CHAN. Wrist attitude-based Parkinson's disease ON/OFF state assessment after medication[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 639-647.
[5] Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.
[6] Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.
[7] Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.
[8] Hai-jin WANG,Zong-yu YIN,Zhen-zheng KE,Ying-jie GUO,Hui-yue DONG. Wear monitoring of helical milling tool based on one-dimensional convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 931-939.
[9] Shi-wei LI,Yong-qing YANG,Qian-hui PU,Bo SUN. Nonlinear creep effect analysis for short concrete-filled circular steel tubular columns under axial compression[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1083-1091.
[10] Wen-han CAO,Jun GONG,Hong-gang WANG,Gui GAO,Yuan QI,Dong-ya YANG. Numerical simulation on wear-thermal-stress coupling behavior of cap-seal seal and optimization design[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 258-267.
[11] Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.
[12] Fei FEI,Shen-yu LIU,Chang-cheng WU,De-hua YANG,Sheng-li ZHOU. Human kinetic energy harvesting technology based on magnetic levitation structure[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2215-2222.
[13] HU Li-sha, WANG Su-zhen, CHEN Yi-qiang, GAO Chen-long, HU Chun-yu, JIANG Xin-long, CHEN Zhen-yu, GAO Xing-yu. Fall detection algorithms based on wearable device: a review[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1717-1728.
[14] WANG Yong-bao, ZHAO Ren-da, WU De-bao. Time-dependent behavior of concrete-filled steel tube considering initial stress and bond-slip effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2306-2313.
[15] YUAN Rui-feng, SUN Zhi-jian, YANG Ji-hu, YANG Ming, HU Ya-cai, YU Zi-tao. Experimental study on erosion wear behavior of PFA coated stainless steel tube[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(1): 43-49.