Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (1): 38-45    DOI: 10.3785/j.issn.1008-973X.2021.01.005
    
High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment
Qin-ling ZHANG1,2(),Zhi-yi HUANG1,*()
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. College of Water Conservancy and Architecture Engineering, Tarim University, Alar 843300, China
Download: HTML     PDF(1353KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The temperature scanning test and multiple stress repeated creep recovery (MSCR) test of SBS modified asphalt mastics were conducted by using dynamic shear rheometer based on the self-designed indoor salt erosion and dry-wet cycle test. The unrecoverable creep compliance (Jnr,3.2) at the stress level of 3.2 kPa was used as the evaluation index of high-temperature rheological properties of the mastics. The coupling effects of environment and dry-wet cycles on the rheological properties of the mastics were analyzed. The grey correlation theory was used to explore the correlation between Jnr,3.2 and conventional rheological parameter, dry-wet cycles and test environment. The complex shear modulus, rutting factor and Jnr,3.2 showed an increasing trend with the increase of dry-wet cycles, while the phase angle and creep recovery rate showed a decreasing trend. The sulfate environment has the greatest influence on the high temperature performance of asphalt mastics under the same test conditions. Jnr,3.2 has the largest grey correlation with improved rutting factor and test environment, and the correlation coefficient is greater than 0.93. It is suggested that the method of daily cleaning and regular watering should be adopted to reduce the accumulation of salt and improve the resistance to deformation of asphalt pavement in high temperature and humidity environment.



Key wordsroad engineering      SBS modified asphalt mastics      high temperature rheological property      multiple stress repeated creep recovery (MSCR)      grey relational theory     
Received: 09 February 2020      Published: 05 January 2021
CLC:  U 414  
Corresponding Authors: Zhi-yi HUANG     E-mail: zhqling@zju.edu.cn;hzy@zju.edu.cn
Cite this article:

Qin-ling ZHANG,Zhi-yi HUANG. High temperature properties of SBS modified asphalt mastics in high temperature and high humidity salt environment. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 38-45.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.01.005     OR     http://www.zjujournals.com/eng/Y2021/V55/I1/38


高温高湿盐环境下SBS改性沥青胶浆的高温性能

基于自行设计的室内盐蚀干湿循环试验,采用动态剪切流变仪,对SBS改性沥青胶浆进行温度扫描试验和多重应力重复蠕变恢复(MSCR)试验. 以3.2 kPa应力下的不可恢复蠕变柔量Jnr,3.2为胶浆高温流变性能评价指标,分析试验环境和干湿循环耦合作用对胶浆流变性能的影响. 采用灰色关联理论,探究Jnr,3.2与常规流变参数、干湿循环次数及试验环境之间的关联性. 结果表明,随着盐蚀干湿循环次数的增加,胶浆的复数切变模量、车辙因子及Jnr,3.2均呈增大趋势,相位角和蠕变恢复率呈减小趋势. 在同种试验条件下,硫酸盐环境对胶浆高温性能的影响最大. Jnr,3.2与改进型车辙因子、试验环境的灰色关联度最大,关联度系数均大于0.93. 建议采用日常清扫、定期洒水冲洗的方式来减小路面盐分的积累,提高高温高湿环境中沥青路面的抵抗变形的能力.


关键词: 道路工程,  SBS改性沥青胶浆,  高温流变性能,  多应力重复蠕变恢复(MSCR),  灰色关联理论 
技术指标 试验值 规范值 试验方法
针入度(25 °C, 100 g, 5 s)/0.1 mm 55 40~60 T 0604
软化点/°C 86.6 ≥60 T 0606
延度(5 °C, 5 cm/min)/cm 31.5 ≥20 T 0605
动力黏度(135 °C)/(Pa·s) 2.5 $\leqslant 3$ T 0739
闪点/°C 320 ≥230 T 267
TFOT后质量变化率/% 0.08 ≤1 T 5304
TFOT后延度变化值(5 °C,5 cm/min)/cm 71.6 ≥65 T 4509
TFOT后针入度比(25 °C)/% 17.3 ≥15 T 0603
Tab.1 Properties of SBS asphalt binders
技术指标 测试值 规范值 试验方法
ρ/(g·cm?3) 2.765 ≥2.50 T 0352
ww/% 0.49 ≤1 T 0332
w1/% 100 100 T 0351
w2/% 95.23 90~100 T 0351
w3/% 85.91 75~100 T 0351
α 0.68 <1 T 0353
Tab.2 Properties of mineral filler
Fig.1 Test scheme of salt corrosion dry-wet cycles for SBS-modified mastics
Fig.2 Typical creep and recovery curves cycle in MSCR test
Fig.3 Complex modulus of SBS-modified mastics with temperature in different test environment
Fig.4 Phase angle of SBS-modified mastics with temperature in different test environment
Fig.5 Rutting factor of SBS-modified mastics with temperature in different test environment
Fig.6 Creep and recovery curves of SBS-modified asphalt mastics under different stresses (control group)
Fig.7 Creep recovery rate and unrecoverable creep compliance of SBS modified asphalt mastic under different stresses
试验环境 ${ {{X} } }_{0}^{*}/{\rm{kPa}}^{-1}$ ${ {{X} } }_{1}^{*}/{\rm{kPa} }$ ${ {{X} } }_{2}^{*}/{\rm{kPa} }$ ${ {{X} } }_{3}^{*}$ ${ {{X} } }_{4}^{*}/ {\text{%}}$
清水 3.9884 124.67 161.114 8 0
清水 4.1979 148.17 187.338 15 0
清水 4.5989 171.92 189.430 25 0
5% NaCl 4.0955 130.99 205.066 8 5%
5% NaCl 4.2978 157.66 208.427 15 5%
5% NaCl 4.3531 182.11 227.889 25 5%
5% Na2SO4 4.2857 151.80 209.869 8 5%
5% Na2SO4 4.5348 189.44 214.709 15 5%
5% Na2SO4 4.7676 227.96 272.884 25 5%
Tab.3 Raw data of gray correlation analysis of various factors
${{{X}}}_{0}$ ${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
1 1 1 1 1
1.05250 1.1885 1.1628 1.875 1
1.15307 1.3790 1.1757 3.125 1
Tab.4 Reference sequence and comparison sequence after initialization in water environment
${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
0 0 0 0
0.1360 0.1102 0.8225 0.0525
0.2259 0.0227 1.9719 0.1531
Tab.5 Absolute value of difference sequence in water environment
${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
1 1 1 1
0.91930 0.8994 0.5452 0.9494
0.87275 0.9775 0.3333 0.8656
Tab.6 Grey correlation coefficient in water environment
试验环境 ${{{X}}}_{1}$ ${{{X}}}_{2}$ ${{{X}}}_{3}$ ${{{X}}}_{4}$
清水 0.8974 0.9589 0.6262 0.9383
5% NaCl 0.7980 0.9527 0.5322 0.9364
5% Na2SO4 0.8541 0.9363 0.6284 0.9483
Tab.7 Grey correlation between rutting factors and various factors under different test environments
[1]   张争奇, 张苛 添加剂对含盐高湿环境沥青混合料水稳定性的影响[J]. 功能材料, 2015, 384 (21): 132- 136
ZHANG Zheng-qi, ZHANG Ke Influence of additives on the water stability of asphalt mixture in salty and humid environment[J]. Functional Materials, 2015, 384 (21): 132- 136
[2]   张争奇, 王志祥, 李志宏, 等 含盐高湿环境下沥青混合料耐久性[J]. 北京工业大学学报, 2015, 41 (9): 1365- 1374
ZHANG Zheng-qi, WANG Zhi-xiang, LI Zhi-hong, et al Durability of asphalt pavement under salty and humid environment[J]. Journal of Beijing University of Technology, 2015, 41 (9): 1365- 1374
[3]   张苛, 张争奇 含盐高湿环境沥青混合料力学特性的劣化[J]. 华南理工大学学报: 自然科学版, 2015, 43 (8): 107- 111
ZHANG Ke, ZHANG Zheng-qi Deterioration of mechanical properties of asphalt mixture in salty and humid environment[J]. Journal of South China University of Technology: Natural Science Edition, 2015, 43 (8): 107- 111
[4]   赵青, 赵军 沿海地区盐度对沥青路面抗永久变形性能的影响[J]. 大连交通大学学报, 2016, 37 (2): 69- 72
ZHAO Qing, ZHAO Jun Influence of coastal area salinity on road surface resistance to permanent deformation performance[J]. Journal of Dalian Jiao Tong University, 2016, 37 (2): 69- 72
doi: 10.11953/j.issn.1673-9590.2016.02.069
[5]   张光海. 北方滨海地区沥青混凝土路面损伤机理及使用寿命研究 [D]. 大连: 大连理工大学, 2013.
ZHANG Guang-hai. Research of damage mechanism and service life of coastal area asphalt pavement in Noah China [D]. Dalian: Dalian University, 2013.
[6]   郑霜杰, 刘凤鸣, 李应成, 等 盐溶液与高温耦合作用下沥青混合料性能衰变规律及防治措施[J]. 公路工程, 2017, 42 (5): 140- 148
ZHENG Shuang-jie, LIU Feng-ming, LI Ying-cheng, et al Decay regularity and improvement measures of road performance and mechanical properties of asphalt concrete under salt-wet-heat condition[J]. Highway Engineering, 2017, 42 (5): 140- 148
doi: 10.3969/j.issn.1674-0610.2017.05.029
[7]   王义忠 含盐高湿环境对沥青混合料的侵蚀机理研究[J]. 公路工程, 2015, (5): 250- 254
WANG Yi-zhong Study the erosion mechanism of the asphalt mixture on Salty and humid environment[J]. Highway Engineering, 2015, (5): 250- 254
doi: 10.3969/j.issn.1674-0610.2015.05.055
[8]   崔亚楠, 赵琳, 韩吉伟, 等 盐冻融循环条件下沥青高温流变性能及微观结果[J]. 复合材料学报, 2017, 34 (8): 1839- 1846
CUI Ya-nan, ZHAO Lin, HAN Ji-wei, et al High temperature rheological properties and microstructures of asphalt under salt freezing cycles[J]. Aeta Materiae Compositae Sinica, 2017, 34 (8): 1839- 1846
[9]   付海英, 谢雷东, 虞鸣, 等 SBS改性沥青动态剪切流变性能评价的研究[J]. 公路交通科技, 2005, 22 (12): 9- 12
FU Hai-ying, XIE Lei-dong, YU Ming, et al Dynamic shear rheologic properties of SBS modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2005, 22 (12): 9- 12
doi: 10.3969/j.issn.1002-0268.2005.12.003
[10]   ANN M B. Interim planning for a future strategic highway research program. national cooperative highway research program report 510 [R]. Washington D.C.: Transportation Research Board of the National Academies, 2003: 37-40.
[11]   公路沥青路面施工技术规范: JTG F40—2004 [S]. 北京: 北京人民交通出版社, 2005.
[12]   公路工程集料试验规程: JTG E42—2005 [S]. 北京: 人民交通出版社, 2005.
[13]   姜睆. 沥青胶浆自愈合能力研究[D]. 武汉: 武汉理工大学, 2011.
JIANG Wan. Research on the self-healing capacity of bitumen mastics [D]. Wuhan: Journal of Wuhan University of Technology, 2011.
[14]   公路工程沥青及沥青混合料试验规程: JTG E20—2011 [S]. 北京: 人民交通出版社, 2011.
[15]   刘思峰, 杨英杰. 灰色系统理论及其应用[M]. 7版. 北京: 科学出版社, 2014: 17–29.
[16]   CAMARO S, SIMONDI B, VISTOLI P P, et al. Long-term behavior of bituminized waste [C]// Proceedings of the International Workshop on the Safety and Performance Evaluation of Bituminization Processes for Radioactive Waste. Czech Republic: Nuclear Research Institute Rez, 1999: 157.
[17]   GWINNER B. Comportement sous eau des déchets radioactifs bitumes: validation expérimentale du modèle de dégradation colonbo [D]. France: Nancy, Institute National Polytechnique de Lorraine, 2004.
[18]   王连生. 有机污染化学进展[D]. 北京: 化学工业出版社, 2006.
WANG Lian-sheng. Progress in organic pollution chemistry [D]. Beijing: Chemical Industry Press, 2006.
[19]   查旭东, 任旭, 傅广文 氯盐融雪剂对SBS改性沥青混合料路用性能的影响分析[J]. 交通科学与工程, 2012, 28 (1): 6- 9
ZHA Xu-dong, REN Xu, FU Guang-wen Influence of chlorine salt as a snowmelt agent on pavement performances for SBS modified asphalt mixtures[J]. Journal of Transport Science and Engineering, 2012, 28 (1): 6- 9
doi: 10.3969/j.issn.1674-599X.2012.01.002
[20]   李海军, 黄晓明, 王宏畅 道路沥青在使用过程中的水老化[J]. 石油学报(石油加工), 2005, 21 (4): 74- 78
LI Hai-jun, HUANG Xiao-ming, WANG Hong-chang Water aging of asphalt during its service life of pavements[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005, 21 (4): 74- 78
[21]   YEH P H, NIEN Y H, CHEN J H, et a1 Thermal and rheological properties of maleated polypropylene modified asphalt[J]. Polymer Engineering and Science, 2005, 45 (8): 1152- 1158
doi: 10.1002/pen.20386
[22]   SHENOY A V, SAINI D R. Thermoplastic melt rheology and processing [M]. New York: Marcel Dekker Inc, 1996.
[1] You ZHAN,Qiang LI,Xiao-tian MA,Chen-ping WANG,Yan-jun QIU. Macro and micro texture based prediction of pavement surface friction[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 684-694.
[2] WAN Chen-guang, SHEN Ai-qin, GUO Yin-chuan. Shear behavior of leveling layer and asphalt pavement of bridge deck pavement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1355-1360.
[3] HUANG Zhi-yi, HU Xiao-yu, WANG Jin-chang, ZHANG Jun-shen. Applicability of middle and high-temperature susceptibility evaluation method for high-viscosity asphalt[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1448-1454.