Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (11): 2067-2075    DOI: 10.3785/j.issn.1008-973X.2021.11.006
    
Effect of screw structure on granular mixing in a double-screw conical mixer
Rui-huan CAI(),Yong-zhi ZHAO*()
Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1102KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The effects of different types of screws on granular mixing in a double-screw conical mixer were investigated by discrete element method (DEM). Specifically, the effects of the pitch diameter ratio (the ratio of the pitch to the diameter of the screw) and the screw diameter ratio (the ratio of the short screw diameter to the long screw diameter) on the mixing efficiency, device power and wear rate of the device were studied. Results show that different types of screws will affect the granular mixing, the device power as well as the device wear, however, the particles all can be well mixed after 100 s in the double-screw conical mixer with different screws. When other parameters remain unchanged, with the screw diameter ratio increasing, the mixing efficiency keeps similar, and the device power increases, but the wear rate of the device decreases. With the screw diameter ratio increasing, the mixing efficiency increases, and the device power increases, but the wear rate of the device fluctuates within a certain range.



Key wordsdiscrete element method (DEM)      double-screw conical mixer      granular mixing      screw structure      device wear     
Received: 10 November 2020      Published: 05 November 2021
CLC:  TK 6  
Fund:  国家自然科学基金资助项目(22078283);浙江大学博士研究生学术新星培养计划资助项目(2019030)
Corresponding Authors: Yong-zhi ZHAO     E-mail: rhcai@zju.edu.cn;yzzhao@zju.edu.cn
Cite this article:

Rui-huan CAI,Yong-zhi ZHAO. Effect of screw structure on granular mixing in a double-screw conical mixer. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2067-2075.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.11.006     OR     https://www.zjujournals.com/eng/Y2021/V55/I11/2067


双螺旋锥形混合器叶片结构对颗粒混合的影响

采用离散单元法(DEM),通过数值模拟研究双螺旋锥形混合器的叶片结构对颗粒混合的影响. 研究主要考察螺径比(双螺旋叶片的螺距和螺旋直径的比例)以及螺旋直径比(较短螺杆和较长螺杆的螺旋叶片直径的比例)对混合器混合效率、设备功率、设备磨损等的影响. 结果表明,不同双螺旋锥形混合器的叶片结构对颗粒的混合、设备功率、设备磨损产生影响,但是总体而言,在不同叶片结构的混合器中,颗粒经过100 s的混合之后都能够达到完全混合状态. 当保持其他参数不变时,随着螺径比的增大,混合器混合效率基本一致,设备功率增大,而设备磨损减小;随着螺旋直径比的增大,混合器混合效率有所提升,设备功率增大,而设备磨损并没有显著的改变.


关键词: 离散单元法(DEM),  双螺旋锥形混合器,  颗粒混合,  叶片结构,  设备磨损 
Fig.1 Double-screw conical mixer
类别 参数 数值
混合器参数 材料
设备的维氏硬度 HV 370
顶部半径 R1/mm 400
底部半径 R2/mm 62.5
高度 H/mm 1 000
初始填充高度/mm 720
自转速度 Ω1/(r·min?1 66.85
公转速度 Ω2/(r·min?1 1.43
螺距 P1/mm 90、120、150、180、210
螺距 P2/mm 112.5、150.0、187.5、225.0、262.5
螺旋直径 D1/mm 120
螺旋直径 D2/mm 90、120、150、180、210
颗粒参数 颗粒直径 d/mm 13.5
颗粒密度/(kg·m?3 2 600
颗粒数量 40 740
碰撞参数 摩擦系数 0.3
弹性恢复系数 0.9
法向弹性系数 kn/(N·m?1 2.9 × 104
切向弹性系数 kt/(N·m?1 1.2 × 104
时间步长/s 1 × 10?4
Tab.1 Parameters used in simulations for double-screw conical mixer
算例编号 P1/mm P2/mm D1/mm D2/mm P1/D1=P2/D2 D2/D1
1 90 112.5 120 150 0.75 1.25
2 120 150.0 120 150 1.00 1.25
3 150 187.5 120 150 1.25 1.25
4 180 225.0 120 150 1.50 1.25
5 210 262.5 120 150 1.75 1.25
6 150 187.5 120 90 1.25 0.75
7 150 187.5 120 120 1.25 1.00
8 150 187.5 120 180 1.25 1.50
9 150 187.5 120 210 1.25 1.75
Tab.2 Simulation cases for double-screw conical mixer
Fig.2 Comparison of geometries of different screws
Fig.3 Simulated snapshots of front view of granular mixing condition for case 3
Fig.4 Simulated axial snapshots of granular mixing condition for cases 1,3 and 5
Fig.5 Simulated axial snapshots of granular mixing condition for cases 6,3 and 9
Fig.6 Mixing index versus time for different cases
Fig.7 Device power for different cases
Fig.8 Wear rate for different cases
[1]   NOROUZI H, ZARGHAMI R, MOSTOUFI N Insights into the granular flow in rotating drums[J]. Chemical Engineering Research and Design, 2015, 102: 12- 25
doi: 10.1016/j.cherd.2015.06.010
[2]   YAMAMOTO M, ISHIHARA S, KANO J Evaluation of particle density effect for mixing behavior in a rotating drum mixer by DEM simulation[J]. Advanced Powder Technology, 2016, 27 (3): 864- 870
doi: 10.1016/j.apt.2015.12.013
[3]   赵永志, 程易 水平滚筒内二元颗粒体系径向分离模式的数值模拟研究[J]. 物理学报, 2008, 57 (1): 322- 328
ZHAO Yong-zhi, CHENG Yi Numerical simulation of radial segregation patterns of binary granular systems in a rotating horizontal drum[J]. Acta Physica Sinica, 2008, 57 (1): 322- 328
doi: 10.3321/j.issn:1000-3290.2008.01.052
[4]   CHANDRATILLEKE G, YU A, STEWART R, et al Effects of blade rake angle and gap on particle mixing in a cylindrical mixer[J]. Powder Technology, 2009, 193 (3): 303- 311
doi: 10.1016/j.powtec.2009.03.007
[5]   ALIAN M, EIN-MOZAFFARI F, UPRETI S Analysis of the mixing of solid particles in a plowshare mixer via discrete element method (DEM)[J]. Powder Technology, 2015, 274: 77- 87
doi: 10.1016/j.powtec.2015.01.012
[6]   SAKAI M, SHIGETO Y, BASINSKAS G, et al Discrete element simulation for the evaluation of solid mixing in an industrial blender[J]. Chemical Engineering Journal, 2015, 279: 821- 839
doi: 10.1016/j.cej.2015.04.130
[7]   LIU P, YANG R, YU A DEM study of the transverse mixing of wet particles in rotating drums[J]. Chemical Engineering Science, 2013, 86: 99- 107
doi: 10.1016/j.ces.2012.06.015
[8]   BRONE D, ALEXANDER A, MUZZIO F Quantitative characterization of mixing of dry powders in V-blenders[J]. AICHE Journal, 1998, 44 (2): 271- 278
doi: 10.1002/aic.690440206
[9]   KUO H, KNIGHT P, PARKER D, et al The influence of DEM simulation parameters on the particle behaviour in a V-mixer[J]. Chemical Engineering Science, 2002, 57 (17): 3621- 3638
doi: 10.1016/S0009-2509(02)00086-6
[10]   MOLAEI E A, YU A B, ZHOU Z Y Particle scale modelling of mixing of ellipsoids and spheres in gas-fluidized beds by a modified drag correlation[J]. Powder Technology, 2019, 343: 619- 628
doi: 10.1016/j.powtec.2018.11.054
[11]   张勇, 金保升, 钟文琪 喷动气固流化床颗粒混合规律的实验研究[J]. 中国电机工程学报, 2008, 28 (20): 8- 12
ZHANG Yong, JIN Bao-sheng, ZHONG Wen-qi Experimental investigation on particle mixing in spout-fluid bed[J]. Proceedings of the CSEE, 2008, 28 (20): 8- 12
doi: 10.3321/j.issn:0258-8013.2008.20.002
[12]   马华庆, 赵永志 喷动流化床中杆状颗粒混合特性的CFD-DEM模拟[J]. 浙江大学学报: 工学版, 2020, 54 (7): 1347- 1354
MA Hua-qing, ZHAO Yong-zhi CFD-DEM investigation on mixing of rod-like particles in spout-fluid bed[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (7): 1347- 1354
[13]   BERGH W, SCARLETT B, KOLAR Z. Computer simulation model of a nauta mixer [J]. Powder Technology, 1993, 77(1): 19-30.
[14]   BERNTSSON O, DANIELSSON L, LAGERHOLM B, et al Quantitative in-line monitoring of powder blending by near infrared reflection spectroscopy[J]. Powder Technology, 2002, 123 (2/3): 185- 193
[15]   GOLSHAN S, ZARGHAMI R, NOROUZI H N, et al Granular mixing in nauta blenders[J]. Powder Technology, 2017, 305: 279- 288
doi: 10.1016/j.powtec.2016.09.059
[16]   BEDNAREK X, MARTIN S, NDIAYE A, et al Extrapolation of DEM simulations to large time scale. application to the mixing of powder in a conical screw mixer[J]. Chemical Engineering Science, 2019, 197: 223- 234
doi: 10.1016/j.ces.2018.12.022
[17]   王凯, 虞军. 化工设备设计全书: 搅拌设备[M]. 北京: 化学工业出版社, 2003.
[18]   QI F, HEINDEL T, WRIGHT M Numerical study of particle mixing in a lab-scale screw mixer using the discrete element method[J]. Powder Technology, 2017, 308: 334- 345
doi: 10.1016/j.powtec.2016.12.043
[19]   BAO Y, LI T, WANG D, et al Discrete element method study of effects of the impeller configuration and operating conditions on particle mixing in a cylindrical mixer[J]. Particuology, 2020, 49: 146- 158
doi: 10.1016/j.partic.2019.02.002
[20]   BAO Y, LU Y, CAI Z, et al Effects of rotational speed and fill level on particle mixing in a stirred tank with different impellers[J]. Chinese Journal of Chemical Engineering, 2018, 26 (6): 1383- 1391
doi: 10.1016/j.cjche.2017.11.010
[21]   OSORIO J, MUZZIO F Effects of processing parameters and blade patterns on continuous pharmaceutical powder mixing[J]. Chemical Engineering and Processing, 2016, 109: 59- 67
doi: 10.1016/j.cep.2016.07.012
[22]   CAI R, HOU Z, ZHAO Y Numerical study on particle mixing in a double-screw conical mixer[J]. Powder Technology, 2019, 352: 193- 208
doi: 10.1016/j.powtec.2019.04.065
[23]   CAI R, ZHAO Y An experimentally validated coarse-grain DEM study of monodisperse granular mixing[J]. Powder Technology, 2020, 361: 99- 111
doi: 10.1016/j.powtec.2019.10.023
[24]   CUNDALL P A, STRACK O D A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29 (1): 47- 65
doi: 10.1680/geot.1979.29.1.47
[25]   TING J M, CORKUM B T Computational laboratory for discrete element geomechanics[J]. Journal of Computing in Civil Engineering, 1992, 6 (2): 129- 146
doi: 10.1061/(ASCE)0887-3801(1992)6:2(129)
[26]   LACEY P M C Developments in the theory of particle mixing[J]. Journal of Applied Chemistry, 1954, 4 (5): 257- 268
[27]   XU L, LUO K, ZHAO Y Numerical prediction of wear in SAG mills based on DEM simulations[J]. Powder Technology, 2018, 329: 353- 363
doi: 10.1016/j.powtec.2018.02.004
[28]   许磊, 罗坤, 赵永志, 等. 物料粒径对半自磨机衬板磨损的影响[J]. 浙江大学学报: 工学版, 2019, 53 (12): 2255- 2263
XU Lei, LUO Kun, ZHAO Yong-zhi, et al Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (12): 2255- 2263
doi: 10.3785/j.issn.1008-973X.2019.12.001
[29]   FINNIE I Erosion of surfaces by solid particles[J]. Wear, 1960, 3 (2): 87- 103
doi: 10.1016/0043-1648(60)90055-7
[1] Lei XU,Kun LUO,Yong-zhi ZHAO,Jian-ren FAN,Ke-fa CEN. Effect of particle size on liner wear in semi-autogenous mill[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(12): 2255-2263.