Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2021, Vol. 55 Issue (2): 213-221    DOI: 10.3785/j.issn.1008-973X.2021.02.001
    
Design of flexible knee-joint protection exoskeleton and walking assistance method
Can-jun YANG1,2(),Zhen-zhe PENG2,Ling-hui XU2,Wei YANG1,2,*()
1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1980KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A wearable flexible knee-joint protection exoskeleton was designed, which is used for knee-joint load reduction and force assistance during body motion. The flexible knee joint was designed using solid isotropic material with penalization (SIMP) model and finite element analysis based on biomechanics features of lower limbs. The exoskeleton joint is rigid during stance period to help reduce the body weight load on the knee joint, and it shows flexibility during swing period to adapt to physiological joint kinematic characteristics of body. Therefore no extra force is loaded on the body joint. The walking assistance module was designed and added on the basis of this wearable flexible knee-joint exoskeleton mechanism. The corresponding assisting force control method was researched to realize walking assistance. The performance tests show that the knee joint protection exoskeleton can reduce the knee joint load up to 110 N. The weight of the wearable exoskeleton is 639 g, therefore the weight loss ratio is significant. The exoskeleton system with walking assistance module weights 4.8 kg. The walking test proves that the system has the ability to assist walking.



Key wordsflexible exoskeleton      wearable exoskeleton      knee-joint protection      weight reduction and support      walking assistance     
Received: 11 October 2020      Published: 09 March 2021
CLC:  TP 242.6  
Fund:  国家自然科学基金资助项目(51805469);浙江省食品药品监管系统科技计划资助项目(2020016)
Corresponding Authors: Wei YANG     E-mail: ycj@zju.edu.cn;zjuaway@163.com
Cite this article:

Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2021.02.001     OR     http://www.zjujournals.com/eng/Y2021/V55/I2/213


柔性膝关节保护外骨骼及其行走助力方法设计

设计柔性可穿戴式膝关节保护外骨骼,用于实现人体运动过程中膝关节负载减重及行走助力功能. 根据人体生物力学特点,使用固体各向同性材料惩罚(SIMP)模型与有限元分析设计柔性外骨骼膝关节,该柔性关节在行走运动支撑期具有刚性,能够减轻膝关节体重负载,在摆动期柔性较强,能适应人体生理关节运动特性,不对膝关节造成额外载荷. 在柔性可穿戴式膝关节外骨骼结构的基础上,配套设计行走助力模块,研究相应的助力控制方法可以实现步行助力. 性能测试实验表明,单侧膝关节保护外骨骼最大能减轻110 N的膝关节负载,外骨骼结构自身质量为639 g,减重比大;带行走助力模块的外骨骼系统质量为4.8 kg,能实现步行运动的助力功能.


关键词: 柔性外骨骼,  穿戴式外骨骼,  膝关节保护,  减重支撑,  行走助力 
Fig.1 Human motion surface and distribution of lower limb freedom
关节运动 步行运动范围[14] 运动极限[15]
髋关节旋内/旋外 1.6°/13.2° 50°/40°
髋关节屈/伸 32.2°/22.5° 120°/30°
髋关节外展/内收 7.9°/6.4° 20°/45°
膝关节屈/伸 73.5°/0° 150°/0°
踝关节背屈/趾屈 14.1°/20.6° 20°/40°
踝关节内/外翻 16.5°/25.7° 20°/35°
Tab.1 Motion range of each lower limb joint
大腿长/mm 大腿围/mm 小腿围/mm 体重/kg
$ {452}_{+30}^{-29} $ $ {408}_{+51}^{-44} $ $ {353}_{+49}^{-49} $ $ 56 $
Tab.2 Physical parameters of human body
Fig.2 Generalized material density nephogram of flexible joint
Fig.3 Design sketch of flexible exoskeleton joint
Fig.4 Simulation and verification of SIMP method
Fig.5 Stress and deformation nephogram after optimization
Fig.6 Structure design of wearable exoskeleton
Fig.7 Design of hip-joint assist mechanism
Fig.8 Cable displacements and joint angles for hip joint and knee joint force assistance
Fig.9 Wearing effect of exoskeleton system
Fig.10 Stress equivalent sample and test data
Fig.11 Test while wearing knee-joint protection exoskeleton
Fig.12 Relationship between knee-joint rotation and exo-joint strain
序号 测试条件 ε1 /10?6 P /N
1 腿环接触涤纶衣物 1066 52.72
2 黏接硬橡胶接触衣物,松束缚 1150 56.87
3 黏接硬橡胶,中等束缚 1445 71.46
4 黏接硬橡胶,紧束缚 2083 103.00
Tab.3 Load results of exoskeleton joint under different conditions
Fig.13 Output current and rope ends displacement before and after adding one-side load
[1]   任兴宽, 杨鹏, 吴国强, 等 骨性膝关节炎治疗研究进展[J]. 世界最新医学信息文摘, 2019, (92): 74- 75
REN Xing-kuan, YANG Peng, WU Guo-qiang, et al Research progress in treatment of knee osteoarthritis[J]. World Latest Medicine Information, 2019, (92): 74- 75
[2]   MESSIER S, GUTEKUNST D, DAVIS C, et al Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis[J]. Arthritis and Rheumatology, 2005, 52 (7): 2026- 2032
doi: 10.1002/art.21139
[3]   范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海: 上海交通大学, 2014.
FAN Yuan-jie. Study on lower limb exoskeleton for rehabilitation based on multi-source information fusion including sEMG & interactive force and its clinical trail [D]. Shanghai: Shanghai Jiao Tong University, 2014.
[4]   史延雷, 张明路, 张小俊, 等 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27 (18): 2494- 2499
SHI Yan-lei, ZHANG Ming-lu, ZHANG Xiao-jun, et al Design and analysis of a rotary-type robot flexible joint[J]. China Mechanical Engineering, 2016, 27 (18): 2494- 2499
doi: 10.3969/j.issn.1004-132X.2016.18.014
[5]   朱蒙, 管小荣, 李杨, 等 偏瘫下肢外骨骼结构设计与仿真分析[J]. 兵器装备工程学报, 2019, (11): 160- 165
ZHU Meng, GUAN Xiao-rong, LI Yang, et al Design and simulation analysis of lower-extremity exoskeleton structure for hemiplegia[J]. Journal of Ordnance Equipment Engineering, 2019, (11): 160- 165
doi: 10.11809/bqzbgcxb2019.11.032
[6]   IKEUCHI Y, ASHIHARA J, HIKI Y, et al. Walking assist device with bodyweight support system [C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 4073-4079.
[7]   TAKETOMI T, SANKAI Y. Stair ascent assistance for cerebral palsy with robot suit HAL [C]// 2012 IEEE/SICE International Symposium on System Integration. Fukuoka: IEEE, 2012: 331-336.
[8]   LEE Y, KIM Y, LEE J, et al Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2058- 2069
doi: 10.1109/TMECH.2017.2718999
[9]   BASER O, KIZILHAN H, KILIC E Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41 (5): 1- 15
[10]   LEE K, GUO J Kinematic and dynamic analysis of an anatomically based knee joint[J]. Journal of Biomechanics, 2010, 43 (7): 1231- 1236
doi: 10.1016/j.jbiomech.2010.02.001
[11]   STIENEN A, HEKMAN E, HELM F, et al Self-aligning exoskeleton axes through decoupling of joint rotations and translations[J]. IEEE Transactions on Robotics, 2009, 25 (3): 628- 633
doi: 10.1109/TRO.2009.2019147
[12]   LING Z K, GUO H Q, BOERSMA S Analytical study on the kinematic and dynamic behaviors of a knee joint[J]. Medical Engineering and Physics, 1997, 19 (1): 29- 36
doi: 10.1016/S1350-4533(96)00031-8
[13]   王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D]. 杭州: 浙江大学, 2016.
WANG Dong-hai. A passive gait-based weight-support compliant lower-extremity-exoskeleton [D]. Hangzhou: Zhejiang University, 2016.
[14]   KIRTLE C. CGA normative gait database, Hong Kong Polytechnic University [EB/OL]. http://guardian.curtin.edu.au/cga/data/.
[15]   JOSE L. Wearable robots: biomechatronic exoskeletons [M]. West Sussex: John Wiley & Sons, 2008: 67-68.
[16]   钱竞光, 宋雅伟, 叶强, 等 步行动作的生物力学原理及其步态分析[J]. 南京体育学院学报: 自然科学版, 2006, 4 (12): 1- 7
QIAN Jing-guang, SONG Ya-wei, YE Qiang, et al The biomechanics principle of walking and analysis on gaits[J]. Journal of Nanjing Sports Institute: Natural Science, 2006, 4 (12): 1- 7
[17]   杨巍, 杨灿军, 马张翼, 等 基于振荡器的助行外骨骼跟随助力控制研究[J]. 机电工程, 2019, 10 (10): 1007- 1012
YANG Wei, YANG Can-jun, MA Zhang-yi, et al Following assistance control of walking assist exoskeleton based on oscillator[J]. Journal of Mechanical and Electrical Engineering, 2019, 10 (10): 1007- 1012
doi: 10.3969/j.issn.1001-4551.2019.10.001
[18]   王旭. 织物和皮肤间的摩擦性能研究[D]. 上海: 东华大学, 2011.
WANG Xu. Fricition proporty between fabric and human skin [D]. Shanghai: Donghua University, 2011.
[19]   国家技术监督局. 中国成年人人体尺寸: GB/T 10000—1988 [S]. 北京: 中国标准出版社, 1988.
[1] Jun-ning ZHANFG,Qun-xing SU,Peng-yuan LIU,Zheng-jun WANG,Hong-qiang GU. Adaptive monocular 3D object detection algorithm based on spatial constraint[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1138-1146.
[2] JIA Song min, LU Ying bin, WANG Li jia, LI Xiu zhi, XU Tao. Mobile robot human tracking using hierarchical features[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1677-1683.
[3] JIANG Wen ting, GONG Xiao jin, LIU Ji lin. Incremental large scale dense semantic mapping[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 385-391.
[4] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1651-1657.
[5] WANG Li-jun, HUANG Zhong-chao, ZHAO Yu-qian. New spatial-coherent latent topic model based on super-pixel segmentation and scene classification method[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 402-408.
[6] CAO Teng, XIANG Zhi-yu, LIU Ji-lin. Obstacle detection based on V-intercept in disparity space[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(3): 409-414.
[7] LU Wei, XIANG Zhi-yu, YU Hai-bin, LIU Ji-lin. Object compressive tracking based on adaptive multi-feature appearance model[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(12): 2132-2138.
[8] CHEN Ming-ya, XIANG Zhi-yu, LIU Ji-lin. Assistance localization method for mobile robot based on
monocular natural visual landmarks
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(2): 285-291.
[9] LIN Ying, GONG Xiao-jin, LIU Ji-lin. Calibration of fisheye cameras based on the viewing sphere[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1500-1507.
[10] WANG Hui-fang, ZHU Shi-qiang, WU Wen-xiang. Improved adaptive robust control of servo system with harmonic drive[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1757-1763.
[11] OUYANG Liu, XU Jin, GONG Xiao-jin, LIU Ji-lin. Optimization of visual odometry based on uncertainty analysis[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1572-1579.
[12] MA Li-sha, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Motion constrained generalized Field D* path planning[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(8): 1546-1552.
[13] LU Dan-hui, ZHOU Wen-hui, GONG Xiao-jin, LIU Ji-lin. Decoupled mobile robot motion estimation based on fusion of
visual and inertial measurement unit
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(6): 1021-1026.
[14] XU Jin, SHEN Min-yi, YANG Li, WANG Wei-qiang, LIU Ji-lin. Binocular bundle adjustment based localization
and terrain stitching for robot
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1141-1146.
[15] CHEN Jia-qian, LIUYu-tian, HE Yan, JIANG Jing-ping. Novel dynamic mapping method based on occupancy grid
model and sample sets
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(5): 794-798.