1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China 2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
A wearable flexible knee-joint protection exoskeleton was designed, which is used for knee-joint load reduction and force assistance during body motion. The flexible knee joint was designed using solid isotropic material with penalization (SIMP) model and finite element analysis based on biomechanics features of lower limbs. The exoskeleton joint is rigid during stance period to help reduce the body weight load on the knee joint, and it shows flexibility during swing period to adapt to physiological joint kinematic characteristics of body. Therefore no extra force is loaded on the body joint. The walking assistance module was designed and added on the basis of this wearable flexible knee-joint exoskeleton mechanism. The corresponding assisting force control method was researched to realize walking assistance. The performance tests show that the knee joint protection exoskeleton can reduce the knee joint load up to 110 N. The weight of the wearable exoskeleton is 639 g, therefore the weight loss ratio is significant. The exoskeleton system with walking assistance module weights 4.8 kg. The walking test proves that the system has the ability to assist walking.
Fig.1Human motion surface and distribution of lower limb freedom
关节运动
步行运动范围[14]
运动极限[15]
髋关节旋内/旋外
1.6°/13.2°
50°/40°
髋关节屈/伸
32.2°/22.5°
120°/30°
髋关节外展/内收
7.9°/6.4°
20°/45°
膝关节屈/伸
73.5°/0°
150°/0°
踝关节背屈/趾屈
14.1°/20.6°
20°/40°
踝关节内/外翻
16.5°/25.7°
20°/35°
Tab.1Motion range of each lower limb joint
大腿长/mm
大腿围/mm
小腿围/mm
体重/kg
$ {452}_{+30}^{-29} $
$ {408}_{+51}^{-44} $
$ {353}_{+49}^{-49} $
$ 56 $
Tab.2Physical parameters of human body
Fig.2Generalized material density nephogram of flexible joint
Fig.3Design sketch of flexible exoskeleton joint
Fig.4Simulation and verification of SIMP method
Fig.5Stress and deformation nephogram after optimization
Fig.6Structure design of wearable exoskeleton
Fig.7Design of hip-joint assist mechanism
Fig.8Cable displacements and joint angles for hip joint and knee joint force assistance
Fig.9Wearing effect of exoskeleton system
Fig.10Stress equivalent sample and test data
Fig.11Test while wearing knee-joint protection exoskeleton
Fig.12Relationship between knee-joint rotation and exo-joint strain
序号
测试条件
ε1 /10?6
P /N
1
腿环接触涤纶衣物
1066
52.72
2
黏接硬橡胶接触衣物,松束缚
1150
56.87
3
黏接硬橡胶,中等束缚
1445
71.46
4
黏接硬橡胶,紧束缚
2083
103.00
Tab.3Load results of exoskeleton joint under different conditions
Fig.13Output current and rope ends displacement before and after adding one-side load
[1]
任兴宽, 杨鹏, 吴国强, 等 骨性膝关节炎治疗研究进展[J]. 世界最新医学信息文摘, 2019, (92): 74- 75 REN Xing-kuan, YANG Peng, WU Guo-qiang, et al Research progress in treatment of knee osteoarthritis[J]. World Latest Medicine Information, 2019, (92): 74- 75
[2]
MESSIER S, GUTEKUNST D, DAVIS C, et al Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis[J]. Arthritis and Rheumatology, 2005, 52 (7): 2026- 2032
doi: 10.1002/art.21139
[3]
范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海: 上海交通大学, 2014. FAN Yuan-jie. Study on lower limb exoskeleton for rehabilitation based on multi-source information fusion including sEMG & interactive force and its clinical trail [D]. Shanghai: Shanghai Jiao Tong University, 2014.
[4]
史延雷, 张明路, 张小俊, 等 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27 (18): 2494- 2499 SHI Yan-lei, ZHANG Ming-lu, ZHANG Xiao-jun, et al Design and analysis of a rotary-type robot flexible joint[J]. China Mechanical Engineering, 2016, 27 (18): 2494- 2499
doi: 10.3969/j.issn.1004-132X.2016.18.014
[5]
朱蒙, 管小荣, 李杨, 等 偏瘫下肢外骨骼结构设计与仿真分析[J]. 兵器装备工程学报, 2019, (11): 160- 165 ZHU Meng, GUAN Xiao-rong, LI Yang, et al Design and simulation analysis of lower-extremity exoskeleton structure for hemiplegia[J]. Journal of Ordnance Equipment Engineering, 2019, (11): 160- 165
doi: 10.11809/bqzbgcxb2019.11.032
[6]
IKEUCHI Y, ASHIHARA J, HIKI Y, et al. Walking assist device with bodyweight support system [C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 4073-4079.
[7]
TAKETOMI T, SANKAI Y. Stair ascent assistance for cerebral palsy with robot suit HAL [C]// 2012 IEEE/SICE International Symposium on System Integration. Fukuoka: IEEE, 2012: 331-336.
[8]
LEE Y, KIM Y, LEE J, et al Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2058- 2069
doi: 10.1109/TMECH.2017.2718999
[9]
BASER O, KIZILHAN H, KILIC E Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41 (5): 1- 15
[10]
LEE K, GUO J Kinematic and dynamic analysis of an anatomically based knee joint[J]. Journal of Biomechanics, 2010, 43 (7): 1231- 1236
doi: 10.1016/j.jbiomech.2010.02.001
[11]
STIENEN A, HEKMAN E, HELM F, et al Self-aligning exoskeleton axes through decoupling of joint rotations and translations[J]. IEEE Transactions on Robotics, 2009, 25 (3): 628- 633
doi: 10.1109/TRO.2009.2019147
[12]
LING Z K, GUO H Q, BOERSMA S Analytical study on the kinematic and dynamic behaviors of a knee joint[J]. Medical Engineering and Physics, 1997, 19 (1): 29- 36
doi: 10.1016/S1350-4533(96)00031-8
[13]
王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D]. 杭州: 浙江大学, 2016. WANG Dong-hai. A passive gait-based weight-support compliant lower-extremity-exoskeleton [D]. Hangzhou: Zhejiang University, 2016.
[14]
KIRTLE C. CGA normative gait database, Hong Kong Polytechnic University [EB/OL]. http://guardian.curtin.edu.au/cga/data/.
[15]
JOSE L. Wearable robots: biomechatronic exoskeletons [M]. West Sussex: John Wiley & Sons, 2008: 67-68.
[16]
钱竞光, 宋雅伟, 叶强, 等 步行动作的生物力学原理及其步态分析[J]. 南京体育学院学报: 自然科学版, 2006, 4 (12): 1- 7 QIAN Jing-guang, SONG Ya-wei, YE Qiang, et al The biomechanics principle of walking and analysis on gaits[J]. Journal of Nanjing Sports Institute: Natural Science, 2006, 4 (12): 1- 7
[17]
杨巍, 杨灿军, 马张翼, 等 基于振荡器的助行外骨骼跟随助力控制研究[J]. 机电工程, 2019, 10 (10): 1007- 1012 YANG Wei, YANG Can-jun, MA Zhang-yi, et al Following assistance control of walking assist exoskeleton based on oscillator[J]. Journal of Mechanical and Electrical Engineering, 2019, 10 (10): 1007- 1012
doi: 10.3969/j.issn.1001-4551.2019.10.001
[18]
王旭. 织物和皮肤间的摩擦性能研究[D]. 上海: 东华大学, 2011. WANG Xu. Fricition proporty between fabric and human skin [D]. Shanghai: Donghua University, 2011.