|
|
Design of flexible knee-joint protection exoskeleton and walking assistance method |
Can-jun YANG1,2( ),Zhen-zhe PENG2,Ling-hui XU2,Wei YANG1,2,*( ) |
1. Ningbo Research Institute, Zhejiang University, Ningbo 315100, China 2. College of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China |
|
|
Abstract A wearable flexible knee-joint protection exoskeleton was designed, which is used for knee-joint load reduction and force assistance during body motion. The flexible knee joint was designed using solid isotropic material with penalization (SIMP) model and finite element analysis based on biomechanics features of lower limbs. The exoskeleton joint is rigid during stance period to help reduce the body weight load on the knee joint, and it shows flexibility during swing period to adapt to physiological joint kinematic characteristics of body. Therefore no extra force is loaded on the body joint. The walking assistance module was designed and added on the basis of this wearable flexible knee-joint exoskeleton mechanism. The corresponding assisting force control method was researched to realize walking assistance. The performance tests show that the knee joint protection exoskeleton can reduce the knee joint load up to 110 N. The weight of the wearable exoskeleton is 639 g, therefore the weight loss ratio is significant. The exoskeleton system with walking assistance module weights 4.8 kg. The walking test proves that the system has the ability to assist walking.
|
Received: 11 October 2020
Published: 09 March 2021
|
|
Fund: 国家自然科学基金资助项目(51805469);浙江省食品药品监管系统科技计划资助项目(2020016) |
Corresponding Authors:
Wei YANG
E-mail: ycj@zju.edu.cn;zjuaway@163.com
|
柔性膝关节保护外骨骼及其行走助力方法设计
设计柔性可穿戴式膝关节保护外骨骼,用于实现人体运动过程中膝关节负载减重及行走助力功能. 根据人体生物力学特点,使用固体各向同性材料惩罚(SIMP)模型与有限元分析设计柔性外骨骼膝关节,该柔性关节在行走运动支撑期具有刚性,能够减轻膝关节体重负载,在摆动期柔性较强,能适应人体生理关节运动特性,不对膝关节造成额外载荷. 在柔性可穿戴式膝关节外骨骼结构的基础上,配套设计行走助力模块,研究相应的助力控制方法可以实现步行助力. 性能测试实验表明,单侧膝关节保护外骨骼最大能减轻110 N的膝关节负载,外骨骼结构自身质量为639 g,减重比大;带行走助力模块的外骨骼系统质量为4.8 kg,能实现步行运动的助力功能.
关键词:
柔性外骨骼,
穿戴式外骨骼,
膝关节保护,
减重支撑,
行走助力
|
|
[1] |
任兴宽, 杨鹏, 吴国强, 等 骨性膝关节炎治疗研究进展[J]. 世界最新医学信息文摘, 2019, (92): 74- 75 REN Xing-kuan, YANG Peng, WU Guo-qiang, et al Research progress in treatment of knee osteoarthritis[J]. World Latest Medicine Information, 2019, (92): 74- 75
|
|
|
[2] |
MESSIER S, GUTEKUNST D, DAVIS C, et al Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis[J]. Arthritis and Rheumatology, 2005, 52 (7): 2026- 2032
doi: 10.1002/art.21139
|
|
|
[3] |
范渊杰. 基于sEMG与交互力等多源信号融合的下肢外骨骼康复机器人及其临床实验研究[D]. 上海: 上海交通大学, 2014. FAN Yuan-jie. Study on lower limb exoskeleton for rehabilitation based on multi-source information fusion including sEMG & interactive force and its clinical trail [D]. Shanghai: Shanghai Jiao Tong University, 2014.
|
|
|
[4] |
史延雷, 张明路, 张小俊, 等 一种旋转型机器人柔性关节设计与分析[J]. 中国机械工程, 2016, 27 (18): 2494- 2499 SHI Yan-lei, ZHANG Ming-lu, ZHANG Xiao-jun, et al Design and analysis of a rotary-type robot flexible joint[J]. China Mechanical Engineering, 2016, 27 (18): 2494- 2499
doi: 10.3969/j.issn.1004-132X.2016.18.014
|
|
|
[5] |
朱蒙, 管小荣, 李杨, 等 偏瘫下肢外骨骼结构设计与仿真分析[J]. 兵器装备工程学报, 2019, (11): 160- 165 ZHU Meng, GUAN Xiao-rong, LI Yang, et al Design and simulation analysis of lower-extremity exoskeleton structure for hemiplegia[J]. Journal of Ordnance Equipment Engineering, 2019, (11): 160- 165
doi: 10.11809/bqzbgcxb2019.11.032
|
|
|
[6] |
IKEUCHI Y, ASHIHARA J, HIKI Y, et al. Walking assist device with bodyweight support system [C]// 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis: IEEE, 2009: 4073-4079.
|
|
|
[7] |
TAKETOMI T, SANKAI Y. Stair ascent assistance for cerebral palsy with robot suit HAL [C]// 2012 IEEE/SICE International Symposium on System Integration. Fukuoka: IEEE, 2012: 331-336.
|
|
|
[8] |
LEE Y, KIM Y, LEE J, et al Biomechanical design of a novel flexible exoskeleton for lower extremities[J]. IEEE/ASME Transactions on Mechatronics, 2017, 22 (5): 2058- 2069
doi: 10.1109/TMECH.2017.2718999
|
|
|
[9] |
BASER O, KIZILHAN H, KILIC E Biomimetic compliant lower limb exoskeleton (BioComEx) and its experimental evaluation[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41 (5): 1- 15
|
|
|
[10] |
LEE K, GUO J Kinematic and dynamic analysis of an anatomically based knee joint[J]. Journal of Biomechanics, 2010, 43 (7): 1231- 1236
doi: 10.1016/j.jbiomech.2010.02.001
|
|
|
[11] |
STIENEN A, HEKMAN E, HELM F, et al Self-aligning exoskeleton axes through decoupling of joint rotations and translations[J]. IEEE Transactions on Robotics, 2009, 25 (3): 628- 633
doi: 10.1109/TRO.2009.2019147
|
|
|
[12] |
LING Z K, GUO H Q, BOERSMA S Analytical study on the kinematic and dynamic behaviors of a knee joint[J]. Medical Engineering and Physics, 1997, 19 (1): 29- 36
doi: 10.1016/S1350-4533(96)00031-8
|
|
|
[13] |
王东海. 基于行走步态的被动式重力支撑柔性下肢外骨骼系统[D]. 杭州: 浙江大学, 2016. WANG Dong-hai. A passive gait-based weight-support compliant lower-extremity-exoskeleton [D]. Hangzhou: Zhejiang University, 2016.
|
|
|
[14] |
KIRTLE C. CGA normative gait database, Hong Kong Polytechnic University [EB/OL]. http://guardian.curtin.edu.au/cga/data/.
|
|
|
[15] |
JOSE L. Wearable robots: biomechatronic exoskeletons [M]. West Sussex: John Wiley & Sons, 2008: 67-68.
|
|
|
[16] |
钱竞光, 宋雅伟, 叶强, 等 步行动作的生物力学原理及其步态分析[J]. 南京体育学院学报: 自然科学版, 2006, 4 (12): 1- 7 QIAN Jing-guang, SONG Ya-wei, YE Qiang, et al The biomechanics principle of walking and analysis on gaits[J]. Journal of Nanjing Sports Institute: Natural Science, 2006, 4 (12): 1- 7
|
|
|
[17] |
杨巍, 杨灿军, 马张翼, 等 基于振荡器的助行外骨骼跟随助力控制研究[J]. 机电工程, 2019, 10 (10): 1007- 1012 YANG Wei, YANG Can-jun, MA Zhang-yi, et al Following assistance control of walking assist exoskeleton based on oscillator[J]. Journal of Mechanical and Electrical Engineering, 2019, 10 (10): 1007- 1012
doi: 10.3969/j.issn.1001-4551.2019.10.001
|
|
|
[18] |
王旭. 织物和皮肤间的摩擦性能研究[D]. 上海: 东华大学, 2011. WANG Xu. Fricition proporty between fabric and human skin [D]. Shanghai: Donghua University, 2011.
|
|
|
[19] |
国家技术监督局. 中国成年人人体尺寸: GB/T 10000—1988 [S]. 北京: 中国标准出版社, 1988.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|