Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (10): 2028-2041    DOI: 10.3785/j.issn.1008-973X.2023.10.012
    
IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system
Wei SUN(),Heng LIU,Jian-feng TAO*(),Hao SUN,Cheng-liang LIU
State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
Download: HTML     PDF(3321KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fault diagnosis method was proposed to address the problem of fault components identification under similar fault information representations in an independent metering valve-controlled hydraulic cylinder system. An independently recurrent neural network (IndRNN) and a one-dimensional large-kernel convolution neural network (1DLCNN) was combined in the method. An independent metering valve-controlled hydraulic cylinder system was constructed. A state-sensing scheme was presented for capturing pressure and displacement signals. The signal characteristics under different fault conditions were analyzed. A deep neural network model utilizing IndRNN-1DLCNN was established. The deep network architecture of multi-layer IndRNN with a residual structure was adopted. The 1DLCNN was developed to enhance the global information capture capability. The model structure facilitated multi-sensor information fusion and specific fault component identification. Results showed that the proposed method could accurately distinguish eight specific fault components, including four pilot valves, two main valves, displacement sensors and a hydraulic cylinder in the case of different working conditions. The overall diagnostic accuracy of the system could reach up to 96% for the discussed working conditions. The fault identification accuracy of one component was above 93% under the working condition.



Key wordsindependent metering control      valve-controlled hydraulic cylinder system      independently recurrent neural network      one-dimensional large-kernel convolution neural network      fault diagnosis     
Received: 21 October 2022      Published: 18 October 2023
CLC:  TH 137  
Fund:  国家重点研发计划资助项目(2020YFB2009703);教育部-中国移动联合基金资助建设项目(MCM20180703)
Corresponding Authors: Jian-feng TAO     E-mail: fireire233@sjtu.edu.cn;jftao@sjtu.edu.cn
Cite this article:

Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.10.012     OR     https://www.zjujournals.com/eng/Y2023/V57/I10/2028


基于IndRNN-1DLCNN的负载口独立控制阀控缸系统故障诊断

为了解决负载口独立控制阀控液压缸系统故障信息相似表征下的故障元件识别难题,提出基于独立循环神经网络(IndRNN)和一维大核卷积神经网络(1DLCNN)结合的故障诊断方法. 构建负载口独立控制阀控液压缸系统,针对系统提出压力与位移信号的状态感知方案,分析了系统故障的信号特征. 设计一种基于IndRNN-1DLCNN的深度神经网络模型,模型引入残差结构进行多层IndRNN设计并引入1DLCNN增强全局信息捕捉能力,实现多源信号的融合,识别发生故障的具体元件. 结果表明在不同的负载工况下,利用提出的方法均能够准确地将系统故障定位至4个先导阀、2个主阀、1组位移传感器以及1个液压缸共8类具体元件,系统的整体诊断准确率最高达到96%,单一元件的故障识别准确率均大于93%.


关键词: 负载口独立控制,  阀控液压缸系统,  独立循环神经网络,  一维大核卷积神经网络,  故障诊断 
Fig.1 Schematic diagram of independent metering valve-controlled hydraulic cylinder system
Fig.2 Practical diagram of independent metering valve-controlled hydraulic cylinder system
参数 参数值 参数 参数值
$ {p}_{\mathrm{s}} $ 10.00 MPa $ {M}_{\mathrm{p}} $ 0.05 kg
$ {p}_{\mathrm{s}\mathrm{p}} $ 3.20 MPa $ {D}_{\mathrm{c}} $ 140.00 mm
$ {D}_{\mathrm{v}} $ 16.00 mm $ {D}_{\mathrm{r}} $ 100.00 mm
$ {M}_{\mathrm{v}} $ 1.00 kg M 100.00 kg
$ {D}_{\mathrm{p}} $ 8.00 mm K 2.50×106 N/m
Tab.1 Valve-controlled hydraulic cylinder system parameters
Fig.3 Diagram of high-speed on/off valve driving voltage
Fig.4 Control strategy of independent metering valve-controlled hydraulic cylinder system
参数符号 参数值
PID1比例环节 $ {K}_{\mathrm{p}\mathrm{v}1}、{K}_{\mathrm{p}\mathrm{v}2} $ 60.00
PID1积分环节 $ {K}_{\mathrm{i}\mathrm{v}1}、{K}_{\mathrm{i}\mathrm{v}2} $ 0
PID1微分环节 $ {K}_{\mathrm{d}\mathrm{v}1}、{K}_{\mathrm{d}\mathrm{v}2} $ 0.10
PID1转换系数 $ {K}_{\mathrm{v}1} $ ?0.01
PID1转换系数 $ {K}_{\mathrm{v}2} $ 0.01
PID2比例环节 $ {K}_{\mathrm{p}\mathrm{l}1}、{K}_{\mathrm{p}\mathrm{l}2}、{K}_{\mathrm{p}\mathrm{r}1}、{K}_{\mathrm{p}\mathrm{r}2} $ 100.00
PID2积分环节 $ {K}_{\mathrm{i}\mathrm{l}1}、{K}_{\mathrm{i}\mathrm{l}2}、{K}_{\mathrm{i}\mathrm{r}1}、{K}_{\mathrm{i}\mathrm{r}2} $ 0
PID2微分环节 $ {K}_{\mathrm{d}\mathrm{l}1}、{K}_{\mathrm{d}\mathrm{l}2}、{K}_{\mathrm{d}\mathrm{r}1}、{K}_{\mathrm{d}\mathrm{r}2} $ 0.10
PID2转换系数 $ {K}_{\mathrm{l}1}、{K}_{\mathrm{r}1} $ 250.00
PID2转换系数 $ {K}_{\mathrm{l}2}、{K}_{\mathrm{r}2} $ ?250.00
Tab.2 Controller parameters of valve-controlled hydraulic cylinder system
Fig.5 Diagram of system model structure
Fig.6 Valve low characteristic validation
Fig.7 Step response characteristic validation
Fig.8 Validation of system step response characteristic
Fig.9 Sleeve rustiness of high-speed on/off valve
类型 正常值区间 故障值区间
${d}_{\mathrm{C} }$/s [0, 0.0003] (0.0003, 0.0010]
$ {f}_{\mathrm{C}} $/Hz [48, 52] [40, 48), (52, 60]
${N}_{\mathrm{P} }$/N [1.3, 1.5] [0.6, 1.3)
kP/(N·mm?1) [4.6, 4.8] [3.5, 4.6)
Tab.3 Fault parameters of pilot valve
Fig.10 Fault diagram of left pilot valve1
参数 正常值区间 故障值区间
rV/mm [0.001, 0.015] (0.015, 0.080]
lV/mm [0.001, 0.015] (0.015, 0.080]
NV/N [133, 149] [70, 133)
kV/(N·mm?1) [13.4, 14.8] [7.0, 13.4)
Tab.4 Fault parameters of main valve
Fig.11 Fault diagram of left main valve
参数 正常值区间 故障值区间
$ {\delta }_{\mathrm{V}} $/mm [0, 0.03] (0.03, 0.15]
$ {\delta }_{\mathrm{C}} $/mm [0, 0.01] (0.01, 0.50]
Tab.5 Fault parameters of displacement sensors feedback
Fig.12 Network diagram of multi-layer IndRNN
Fig.13 Network diagram of multi-layer 1DLCNN
Fig.14 IndRNN-1DLCNN-based fault diagnostic model
故障类型 标签 故障类型 标签 故障类型 标签
系统无故障 0 左先导阀1故障 3 右主阀故障 6
左先导阀1故障 1 左先导阀2故障 4 液压缸故障 7
左先导阀2故障 2 左主阀故障 5 传感器故障 8
Tab.6 Fault labels of system
网络层 输入维度 输出维度 关键参数
IndRNN 9×2000 64×2000 IndRNN单元个数:7
隐层特征个数:64
残差连接个数:3
1DLCNN 64×2000 120×39 卷积核大小:100
步长:50
MaxPooling1 120×29 120×5 池化核大小:20
步长:4
1DCNN 120×5 200×3 卷积核大小:3
步长:1
MaxPooling2 200×3 200×1 池化核大小:3
步长:1
Tab.7 Model parameters of IndRNN-1DLCNN
模型 精度/% 模型 精度/%
LSTM 25.6 IndRNN 84.7
2DCNN 87.9 1DLCNN 90.9
1DCNN 85.1 IndRNN-1DLCNN 96.0
Tab.8 Fault diagnosis accuracy for system
Fig.15 Confusion matrix of test set for fault diagnosis
Fig.16 Feature visualization of fault diagnosis
Fig.17 Fault diagnosis accuracy under different conditions
模型 ACC/%
工况A 工况B 工况C
2DCNN 87.9 89.1 90.2
1DCNN 85.1 84.5 86.7
IndRNN 84.7 84.8 83.7
1DLCNN 90.9 93.0 91.3
IndRNN-1DLCNN 96.0 96.0 95.4
Tab.9 Fault diagnosis accuracy under different conditions
[1]   徐兵, 丁孺琦, 张军辉 基于泵阀联合控制的负载口独立系统试验研究[J]. 浙江大学学报: 工学版, 2015, 49 (1): 93- 101
XU Bing, DING Ru-qi, ZHANG Jun-hui Experiment research on individual metering systems of mobile machinery based on coordinate control of pump and valves[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (1): 93- 101
[2]   CAMPANINI F, BIANCHI R, VACCA A, et al. Optimized control for an independent metering valve with integrated diagnostic features [C]// ASME/BATH Symposium on Fluid Power and Motion Control. Sarasota: ASME, 2017: 1-10.
[3]   钟麒. 面向负载口独立控制的可编程阀关键技术研究[D]. 杭州: 浙江大学, 2019: 85-141.
ZHONG Qi. Research on key technologies of programmable valve for independent metering control [D]. Hangzhou: Zhejiang University, 2019: 85-141.
[4]   牛善帅, 王军政, 张鹏, 等 基于负载口独立控制的双伺服阀控缸系统[J]. 北京理工大学学报, 2019, 39 (12): 1292- 1297
NIU Shan-shuai, WANG Jun-zheng, ZHANG Peng, et al A dual servo-valved cylinder system based on load port independent control[J]. Transactions of Beijing Institute of Technology, 2019, 39 (12): 1292- 1297
[5]   OPDENBOSCH P, SADEGH N, BOOK W, et al. Auto-calibration based control for independent metering of hydraulic actuators [C]// IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 153-158.
[6]   LÜBBERT J, SITTE A, BECK B, et al. Load-force-adaptive outlet throttling: an easily commissionable independent metering control strategy [C]// BATH/ASME Symposium on Fluid Power and Motion Control. Bath: ASME, 2016: 1-13.
[7]   ABUOWDA K, NOROOZI S, DUPAC M, et al. Algorithm design for the novel mechatronics electro-hydraulic driving system: micro-independent metering [C]// IEEE International Conference on Mechatronics. Ilmenau: IEEE, 2019: 7-12.
[8]   ZHONG Q, BAO H M, LI Y B, et al Investigation into the independent metering control performance of a twin spools valve with switching technology-controlled pilot stage[J]. Chinese Journal of Mechanical Engineering, 2021, 34 (5): 242- 258
[9]   LI C, LYU L T, HELIAN B B, et al Precision motion control of an independent metering hydraulic system with nonlinear flow modeling and compensation[J]. IEEE Transactions on Industrial Electronics, 2022, 69 (7): 7088- 7098
doi: 10.1109/TIE.2021.3102434
[10]   ABUOWDA K, OKHOTNIKOV I, NOROOZI S, et al A review of electrohydraulic independent metering technology[J]. ISA Transactions, 2020, 98: 364- 381
doi: 10.1016/j.isatra.2019.08.057
[11]   RANNOW M. Fail operational controls for an independent metering valve [C]// 10th International Fluid Power Conference. Dresden: Technische Universität Dresden, 2016: 465-476.
[12]   DING R, CHENG M, JIANG L, et al Active fault-tolerant control for electro-hydraulic systems with an independent metering valve against valve faults[J]. IEEE Transactions on Industrial Electronics, 2020, 68 (8): 7221- 7232
[13]   OPDENBOSCH P, SADEGH N, BOOK W Intelligent controls for electro-hydraulic poppet valves[J]. Control Engineering Practice, 2013, 21 (6): 789- 796
doi: 10.1016/j.conengprac.2013.02.008
[14]   BECK B, WEBER J. Enhancing safety of independent metering systems for mobile machines by means of fault detection [C]// 15th Scandinavian International Conference on Fluid Power. Linköping: LUEP, 2017: 92-102.
[15]   BIANCHI R, VACCA A, CAMPANINI F. Combining control and monitoring in mobile machines: the case of an hydraulic crane [C]// 11th International Fluid Power Conference. Aachen: RWTH, 2018: 307-319.
[16]   WANG S, ZHANG B, ZHONG Q, et al Study on control performance of pilot high-speed switching valve[J]. Advances in Mechanical Engineering, 2017, 9 (7): 1- 18
[17]   ZHONG Q, ZHANG B, YANG H Y, et al Performance analysis of a high-speed on/off valve based on an intelligent pulse-width modulation control[J]. Advances in Mechanical Engineering, 2017, 9 (11): 1- 11
[18]   RITELLI G F, VACCA A Energetic and dynamic impact of counterbalance valves in fluid power machines[J]. Energy Conversion and Management, 2013, 76: 701- 711
doi: 10.1016/j.enconman.2013.08.021
[19]   LI Y, WANG N, DENG S, et al. Performance analysis of high-speed on-off valve coupled with thermal effect [C]// CSAA/IET International Conference on Aircraft Utility Systems. Nanchang: IET, 2022: 559-606.
[20]   孙博文. 基于对偶空间变换与深度神经网络的闭环控制系统故障诊断方法研究 [D]. 长沙: 国防科技大学, 2019: 13-35.
SUN Bo-wen. Fault diagnosis for closed-loop control systems based on parity space transformation and deep neural network [D]. Changsha: National University of Defense Technology, 2019: 13-35.
[21]   SHI J C, YI J Y, REN Y, et al Fault diagnosis in a hydraulic directional valve using a two-stage multi-sensor information fusion[J]. Measurement, 2021, 179: 109460
doi: 10.1016/j.measurement.2021.109460
[22]   刘渊, 张天宏, 周俊 航空发动机燃油调节执行机构及其传感器的故障诊断与半物理仿真[J]. 推进技术, 2016, 37 (11): 2165- 2172
LIU Yuan, ZHANG Tian-hong, ZHOU Jun Fault diagnosis and semi-physical simulation for actuator and sensor of aero-engine fuel regulator[J]. Journal of Propulsion Technology, 2016, 37 (11): 2165- 2172
[23]   周诗金. 光栅线位移传感器可靠性试验过程状态监测及故障诊断[D]. 长春: 吉林大学, 2019: 9-20.
ZHOU Shi-jin. Condition monitoring and fault diagnosis of reliability test process of raster line displacement sensor [D]. Changchun: Jilin University, 2019: 9-20.
[24]   GUO J X, TAO J F, LI L, et al. Diagnosis method for valve-controlled hydraulic cylinder leakage based on subspace identification [C]// BATH/ASME Symposium on Fluid Power and Motion Control. Bath: ASME, 2018: 1-6.
[25]   LI S, LI W Q, COOK C, et al. Independently recurrent neural network (IndRNN): building a longer and deeper RNN [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake: IEEE, 2018: 5457-5466.
[1] Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU. Compound fault decoupling diagnosis method based on improved Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 855-864.
[2] Le XIE,Xi-dan HENG,Yang LIU,Qi-long JIANG,Dong LIU. Transformer fault diagnosis based on linear discriminant analysis and step-by-step machine learning[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2266-2272.
[3] Jing-jing LIN,Yan-xia SHEN. Stator current sensors’ fault tolerant control for permanent magnet synchronous motor drive system[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1815-1825.
[4] Zheng ZHANG,Xue-jun ZHOU,Xi-chen WANG,Yuan-yuan ZHOU. Short-circuit fault diagnosis and interval location method for constant current remote supply system in cabled underwater information networks[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(6): 1190-1197.
[5] TONG Shui-guang, ZHANG Yi-dong, XU Jian, CONG Fei-yun. Spectral band refined composite multiscale fuzzy entropy and its application in fault diagnosis of rolling bearings[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(8): 1509-1516.
[6] GE Yun-long, CHEN Zi-qiang, ZHENG Chang-wen. Time-varying parameters estimation and fault diagnosis of li-ion battery using UTSTF[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(6): 1223-1230.
[7] YU Jian-bo, LI Chuan-feng, LV Jing-xiang. Average combination difference morphological filter analysis on fault signals of rolling bearing[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1845-1853.
[8] ZHU Wen-ying, FENG Zhi-peng. Analysis of planetary gear vibration signal based on iterated Hilbert transform[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1587-1595.
[9] ZHONG Wei, PENG Liang, ZHOU Yong gang, XU Jian, CONG Fei yun. Slagging diagnosis of boiler based on wavelet packet analysis and support vector machine[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1499-1506.
[10] CHEN Chen,LI Xiao run. Fault diagnosis method of circuit breaker operating mechanism based on coil current analysis[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 527-535.
[11] HAN Ling, LU Yan hui, AN Ying, TIAN Li yuan. Faults diagnosis and classification based on fault-tolerant theory for continuously variable transmission[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1927-1936.
[12] MI Gang-gang, ZHOU Wen-hua, SHEN Cheng-yu, GUO Xiu-qi. Design of driving module and fault diagnosis for
high-speed solenoid valve of diesel
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(9): 1654-1659.
[13] YANG Xian-Yong, ZHOU Xiao-Jun, LIN Yong, ZHANG Wen-Bin, CHEN Lu. Fault diagnosis approach for rolling bearing based on V-detector algorithm[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(9): 1805-1810.
[14] YANG Xian-Yong, ZHOU Xiao-Jun, ZHANG Wen-Bin, YANG Fu-Chun. Rolling bearing fault diagnosis based on local wave method
and KPCA-LSSVM
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(8): 1519-1524.
[15] DU Wen-Chi, WANG Kun, JIAN Feng. Feature space dimensionreduction based process monitoring of solvent dehydration separation process[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1255-1259.