Please wait a minute...
J4  2010, Vol. 44 Issue (8): 1519-1524    DOI: 10.3785/j.issn.1008-973X.2010.08.015
    
Rolling bearing fault diagnosis based on local wave method
and KPCA-LSSVM
YANG Xian-yong1,2, ZHOU Xiao-jun1, ZHANG Wen-bin1, YANG Fu-chun1
1. Zhejiang Provincial Key Laboratory of Advanced Manufacturing Technology, Zhejiang University,
Hangzhou 310027, China; 2. China Ship Development and Design Center, Wuhan 430064, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Aimed at the nonstationary characteristics of rolling bearing vibration signal, a fault diagnosis method was proposed based on localwave method and KPCA(kernel principal component analysis)  LSSVM(least squares support vector machine). Firstly, local wave decomposition was used to decompose rolling bearing vibration signal into several intrinsic mode function (IMF), whose feature energy, singular values and AR model parameters were computed as initial feature vectors. Secondly, ini tial feature vectors were mapped into a higherdimensional space with KPCA, and the kemel principal components were extracted as new feature vectors, which used as the input of LSSVM for fault classification. The experimental results show the KPCALSSVM method improves LSSVMs classification performance by KPCA obtaining additional discriminative information, and has better generalization than direct LSSVM method, and can identify rolling bearing fault patterns more accurately.



Published: 21 September 2010
CLC:     
  TH 133.3  
  TH 17  
  TP 181  
Cite this article:

YANG Xian-Yong, ZHOU Xiao-Jun, ZHANG Wen-Bin, YANG Fu-Chun. Rolling bearing fault diagnosis based on local wave method
and KPCA-LSSVM. J4, 2010, 44(8): 1519-1524.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.08.015     OR     http://www.zjujournals.com/eng/Y2010/V44/I8/1519


基于局域波法和KPCA-LSSVM的滚动轴承故障诊断

针对故障滚动轴承振动信号具有非平稳性,提出基于局域波法和核主元分析最小二乘支持向量机(KPCA LSSVM )的故障诊断方法.先对轴承振动信号进行局域波分解得到若干内禀模式函数(IMF),分别计算各IMF分量的特征能量、奇异值和AR模型参数作为原始特征向量,再用KPCA将原始特征向量映射到高维特征空间提取主元构造新的特征向量,将其作为LSSVM分类器的输入来实现轴承的故障诊断.故障诊断试验结果表明,KPCALSSVM诊断方法通过KPCA得到更多的识别信息,改善了LSSVM的分类性能,相对于直接LSSVM诊断方法具有更优的泛化性,可准确识别轴承的故障类别和严重程度.

[1] SUYKENS J A K,VANDEWALLE J.Least squares support vectors machine classifiers  [J].Neural Processing Letters, 1999, 9(3): 293300.
[2] 甘良志, 孙宗海, 孙优贤. 稀疏最小二乘支持向量机[J]. 浙江大学学报:工学版, 2007, 41(2): 245248.
GAN Liangzhi, SUN Zonghai, SUN Youxian. Sparse least squares support vector machine  [J]. Journal of Zhejiang University:Engineering Science, 2007,41(2): 245248.
[3] OJEDA F, SUYKENS J A K, MOOR B D. Low rank updated LSSVM classifiers for fast variable selection [J]. Neural Networks, 2008, 21(2/3): 437449.
[4] 康海英, 栾军英, 郑海起, 等. 基于阶次跟踪和经验模态分解的滚动轴承包络解调分析[J]. 机械工程学报, 2007, 43(8): 119122.
KANG Haiying, LUAN Junying, ZHENG Haiqi, et al. Envelope demodulation analysis of bearing based on order tracking and Empirical mode decomposition [J]. Chinese Journal of Mechanical Engineering, 2007, 43(8): 119122.
[5] 张海勇. 一种新的非平稳信号分析方法—局域波分析[J]. 电子与信息学报, 2003, 25(10): 13271333.
ZHANG Haiyong. A new method for analyzing nonstation ary signallocal wave analysis [J]. Journal of Electronics and Information Technology, 2003, 25(10): 13271333.
[6] XU Yong, ZHANG David, SONG Fengxi, et al. A method for speeding up feature extraction based on KPCA [J]. Neurocomputing, 2007, 70(46): 10561061.
[7] HUANG N E, SHEN Z, STEVEN R L, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis [J]. Proceedings of the Royal Society of London, A. 1998, 454(19): 903995.
[8] 孙晖, 朱善安. 基于自适应滤波的滚动轴承故障诊断研究[J]. 浙江大学学报:工学版, 2005, 39(11): 17461749.
SUN Hui, ZHU Shanan. Rolling bearing fault diagnosis based on adaptive filtering [J]. Journal of Zhejiang University:Engineering Science, 2005, 39(11): 17461749.
[9] RILLING G, FLANDRIN P, GONCALVES P. On empirical mode decomposition and its algorithms [C]∥IEEE EURASIP Workshop on NSIP03. Grado, Italy:IEEE, 2003: 811.
[10] SCHLGL A. A comparison of multivariate autoregressive estimators [J]. Signal Processing, 2006, 86: 24262429.
[11] CHIH W H, CHIH J L.A comparison of methods for multiclass support vector machines [J].Neural Networks, 2002, 13(2): 415425.
[12] Case Western Reserve University. Bearing data center [EB/OL]. [20080829]. http:∥www.eecs.cwru.edu/laboratory/bearing.

[1] NING Zhi-hua, HE Le-nian, HU Zhi-cheng. A high voltage high stability switching-mode controller chip[J]. J4, 2014, 48(3): 377-383.
[2] LI Lin, CHEN Jia-wang,GU Lin-yi, WANG Feng. Variable displacement distributor with valve control for axial piston pump/motor[J]. J4, 2014, 48(1): 29-34.
[3] CHEN Zhao, YU Feng, CHEN Ting-ting. Log-structured even recycle strategy for flash storage[J]. J4, 2014, 48(1): 92-99.
[4] JIANG Zhan, YAO Xiao-ming, LIN Lan-fen. Feature-based adaptive method of ontology mapping[J]. J4, 2014, 48(1): 76-84.
[5] CHEN Di-shi,ZHANG Yu , LI Ping. Ground effect modeling for small-scale unmanned helicopter[J]. J4, 2014, 48(1): 154-160.
[6] HUO Xin-xin, CHU Jin-kui,HAN Bing-feng, YAO Fei. Research on interface circuits of multiple piezoelectric generators[J]. J4, 2013, 47(11): 2038-2045.
[7] YANG Xin, XU Duan-qing, YANG Bing. A parallel computing method for irregular work[J]. J4, 2013, 47(11): 2057-2064.
[8] WANG Yu-qiang,ZHANG Kuan-di,CHEN Xiao-dong. Numerical analysis on interface behavior of
adhesive bonded steel-concrete composite beams
[J]. J4, 2013, 47(9): 1593-1598.
[9] CUI He-liang, ZHANG Dan, SHI Bin. Spatial resolution and its calibration method for Brillouin scattering based distributed sensors[J]. J4, 2013, 47(7): 1232-1237.
[10] PENG Yong, XU Xiao-jian. Numerical analysis of effect of aggregate distribution on splitting strength of asphalt mixtures[J]. J4, 2013, 47(7): 1186-1191.
[11] JIN Bo, CHEN Cheng, LI Wei. Gait correction algorithm of hexapod walking robot
with semi-round rigid feet
[J]. J4, 2013, 47(5): 768-774.
[12] WU Xiao-rong, QIU Le-miao, ZHANG Shu-you, SUN Liang-feng, GUO Chuan-long. Correlated FMEA method of complex system with linguistic vagueness[J]. J4, 2013, 47(5): 782-789.
[13] ZHONG Shi-ying, WU Xiao-jun, CAI Wu-jun, LING Dao-sheng. Development of horizontal sliding model test facility
 for footpad’s lunar soft landing
[J]. J4, 2013, 47(3): 465-471.
[14] YUAN Xing, ZHANG You-yun, ZHU Yong-sheng, HONG Jun,QI Wen-chang. Fault degree evaluation for rolling bearing combining
backward inference with forward inference
[J]. J4, 2012, 46(11): 1960-1967.
[15] YANG Fei, ZHU Zhu, GONG Xiao-jin, LIU Ji-lin. Real-time dynamic obstacle detection and tracking using 3D Lidar[J]. J4, 2012, 46(9): 1565-1571.