|
|
Image segmentation algorithm based on multi-level feature adaptive fusion |
Xiao-ping YUAN( ),Xiang HE,Xiao-qian WANG,Yang-ming HU |
School of Information and Control Engineering , China University of Mining and Technology, Xuzhou 221116, China |
|
|
Abstract A novel FR-Unet image segmentation algorithm based on multi-layer feature adaptive fusion was proposed in order to solve the problem of low accuracy when segmenting medical images by traditional algorithms. The sampling weighting module was designed to replace the traditional convolutional layer in the encoder stage. The image spatial information was extracted and fused by layer, and the correlation between neighboring pixels and the semantic information at different levels was obtained. A multi-layer adaptive fusion module was designed in the decoder stage in order to extract image channel information layer by layer through nonlinear jump connections and adaptively fuse the contextual information of neighboring connected layers. Then each layer focuses on the extraction of different feature information. FR-Unet was substantially reduced in the number of model parameters, allowing the network to be better supported in scene deployment. The experimental results show that the network excels in numerous tasks such as animal cell segmentation, liver organ segmentation and skin lesion segmentation.
|
Received: 08 November 2021
Published: 25 October 2022
|
|
Fund: 国家科技支撑计划资助项目(2013BAK06B08);江苏省研究生科研与实践创新计划资助项目(SJCX20_0812) |
基于多层级特征自适应融合的图像分割算法
为了解决传统算法对医学图像分割时精度较低的问题,提出基于多层级特征自适应融合的新型FR-Unet图像分割算法. 在编码器阶段,设计采样加权模块替代传统卷积层,对图像空间信息进行逐层提取和特征融合,获得相邻像素之间的相关性和不同层次的语义信息. 在解码器阶段,设计多层级自适应融合模块,通过非线性跳跃连接逐层提取图像通道信息,自适应地融合邻近连接层的上下文信息,使各层专注不同特征信息的提取. FR-Unet在模型参数量上大幅度减少,让网络在场景部署上得到更好的支持. 实验结果表明,该网络在动物细胞分割、肝脏器官分割、皮肤病变分割等众多任务中均表现突出.
关键词:
图像分割,
FR-Unet,
逐层提取,
采样加权模块,
多层级自适应融合模块
|
|
[1] |
扈晓君, 杨宝栋. 基于深度学习的医学图像分析综述[J]电子技术与软件工程, 2021(18): 137-138. HU Xiao-jun, YANG Bao-dong. A review of medical image analysis based on deep learning [J]. Electronic Technology and Software Engineering, 2021 (18): 137-138.
|
|
|
[2] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015: 3431-3440.
|
|
|
[3] |
RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation [C]// International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
|
|
|
[4] |
张娴, 刘玉林, 高智勇 深度学习在医学影像中的应用研究进展[J]. 临床放射学杂志, 2021, 40 (10): 2041- 2044 ZHANG Xian, LIU Yu-lin, GAO Zhi-yong Research advances in the application of deep learning in medical imaging[J]. Journal of Clinical Radiology, 2021, 40 (10): 2041- 2044
|
|
|
[5] |
CHEN C, QIN C, QIU H, et al Deep learning for cardiac image segmentation: a review[J]. Frontiers in Cardiovascular Medicine, 2020, 7: 25
doi: 10.3389/fcvm.2020.00025
|
|
|
[6] |
李继凡, 陈硕, 章强 基于U-Net神经网络的多模态MR颈动脉血管成像的分割方法研究[J]. 中华放射学杂志, 2019, (12): 1091- 1095 LI Ji-fan, CHEN Shuo, ZHANG Qiang Study on segmentation method of multimodal MR carotid angiography based on U-Net neural network[J]. Chinese Journal of Radiology, 2019, (12): 1091- 1095
|
|
|
[7] |
DUAN L, XIONG X, LIU Q, et al Field rice panicle segmentation based on deep full convolutional neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34 (12): 202- 209
|
|
|
[8] |
ZHOU Z, SIDDIQUEE M, TAJBAKHSH N, et al. Unet++: a nested Unet architecture for medical image segmentation [M]// Deep learning in medical image analysis and multimodal learning for clinical decision support. Cham: Springer, 2018: 3-11.
|
|
|
[9] |
TAN L, MA W, XIA J, et al Multimodal magnetic resonance image brain tumor segmentation based on ACU-net network[J]. IEEE Access, 2021, 9: 14608- 14618
doi: 10.1109/ACCESS.2021.3052514
|
|
|
[10] |
TREBING K, STANCZYK T, MEHRKANOON S SmaAt-U-net: precipitation nowcasting using a small attention-U-net architecture[J]. Pattern Recognition Letters, 2021, (145): 275- 289
|
|
|
[11] |
CAO K, ZHANG X An improved Res-UNet model for tree species classification using airborne high-resolution images[J]. Remote Sensing, 2020, 12 (7): 1128- 1135
doi: 10.3390/rs12071128
|
|
|
[12] |
HE N, FANG L, PLAZA A Hybrid first and second order attention U-net for building segmentation in remote sensing images[J]. Science China Information Sciences, 2020, 63 (4): 346- 362
|
|
|
[13] |
赵小虎, 李晓, 叶圣, 等 基于改进U-Net网络的多尺度番茄病害分割算法[J]. 计算机工程与应用, 2022, 58 (10): 216- 223 ZHAO Xiao-hu, LI Xiao, YE Sheng, et al Multiscale tomato disease segmentation algorithm based on improved U-Net network[J]. Computer Engineering and Application, 2022, 58 (10): 216- 223
doi: 10.3778/j.issn.1002-8331.2105-0201
|
|
|
[14] |
周涛, 董雅丽, 霍兵强, 等 U-Net网络医学图像分割应用综述[J]. 中国图象图形学报, 2021, 26 (9): 2058- 2077 ZHOU Tao, DONG Ya-li, HUO Bing-qiang, et al A review of U-Net network medical image segmentation applications[J]. Journal of Image and Graphics, 2021, 26 (9): 2058- 2077
|
|
|
[15] |
MINAEE S, BOYKOV Y Y, PORIKLI F, et al Image segmentation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 40 (7): 3523- 3542
|
|
|
[16] |
冯婷婷, 葛华勇, 孙家慧 一种基于SSD与FRN相结合的密集连接行人检测算法[J]. 信息技术与网络安全, 2020, 39 (12): 56- 60 FENG Ting-ting, GE Hua-yong, SUN Jia-hui A densely connected pedestrian detection algorithm based on the combination of SSD and FRN[J]. Information Technology and Network Security, 2020, 39 (12): 56- 60
|
|
|
[17] |
ARORA R, SAINI I, SOOD N. Modified UNet++ model: a deep model for automatic segmentation of lungs from chest X-ray images [C]// 2021 2nd International Conference on Secure Cyber Computing and Communications. Shanghai: IEEE, 2021: 166-169.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|