Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (4): 772-778    DOI: 10.3785/j.issn.1008-973X.2024.04.012
    
Ankle flexible exoskeleton based on force feedback admittance control
Dong CHEN(),Weida LI*(),Hongmiao ZHANG,Juan LI
1. School of Mechanical and Electric Engineering, Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China
Download: HTML     PDF(2648KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In response to the need for ankle rehabilitation training, a lightweight, easy-to-wear flexible ankle exoskeleton robot was designed using modular drive units and Bowden cables through analysis of ankle joint mechanics. The robot can provide assistance for ankle plantarflexion/dorsiflexion and inversion/eversion movements. Position control and torque control are used for flexible exoskeleton during the dorsiflexion and plantarflexion stages, respectively. Position control is mainly based on traditional proportional integral derivative(PID), while torque control uses force as a feedback signal to establish an admittance model between the interaction force difference and the Bowden cable core displacement compensation. The admittance parameters are dynamically adjusted through the Sigmoid deformation function to meet the requirements of assistive torque output and human-machine interaction compliance. Experimental data showed that the position tracking error was stable within 0.46 cm, and the force output error was stable within ?1.5-1.5 N, meeting the needs of human rehabilitation training.



Key wordsankle joint      rehabilitation training      flexible exoskeleton      force feedback      admittance control     
Received: 13 April 2023      Published: 27 March 2024
CLC:  TP 242  
Corresponding Authors: Weida LI     E-mail: mini1624365292@outlook.com;hit_liweida@163.com
Cite this article:

Dong CHEN,Weida LI,Hongmiao ZHANG,Juan LI. Ankle flexible exoskeleton based on force feedback admittance control. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 772-778.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.04.012     OR     https://www.zjujournals.com/eng/Y2024/V58/I4/772


基于力反馈导纳控制的踝关节柔性外骨骼

针对踝关节康复训练的需求,分析踝关节的运动机理,运用模块化驱动单元与鲍登线,设计轻量化、易穿戴的柔性踝关节外骨骼机器人,实现踝关节跖屈/背屈、内/外翻的运动辅助. 柔性外骨骼在背屈和跖屈阶段分别采用位置控制和力矩控制. 位置控制以传统PID为主;力矩控制以力为反馈信号,建立交互力差值与鲍登线内芯位移补偿之间的导纳模型. 通过Sigmoid变形函数实现导纳参数的动态调控,满足辅助力矩输出和人机交互柔顺性的需求. 实验结果表明,位置跟踪误差不超过0.46 cm,力输出误差为?1.5~1.5 N,能够满足人体康复训练的需求.


关键词: 踝关节,  康复训练,  柔性外骨骼,  力反馈,  导纳控制 
Fig.1 Basic movement types of human ankle joint
Fig.2 Human joint torque analysis
Fig.3 Aid mechanism for plantar flexion movement
Fig.4 Aid mechanism for valgus and dorsiflexion movement
Fig.5 Composition of rope drive unit
Fig.6 Overall display of exoskeleton prototype
Fig.7 Diagram of robot coordinate system and kinematic analysis
Fig.8 Diagram of Bowden cable tension and displacement model
Fig.9 Bowdoen cable output force and displacement curves
Fig.10 Bowden cable offset compensation
Fig.11 Admittance control block diagram based on force feedback
Fig.12 Adaptive curve of admittance parameter
Fig.13 Treadmill walking experiment
Fig.14 Curve of core displacement over time
Fig.15 Force variation curve during plantar flexion
Fig.16 Core displacement curve during back
[1]   第二次全国残疾人抽样调查领导小组, 中华人民共和国国家统计局 2006年第二次全国残疾人抽样调查主要数据公报[J]. 中国康复理论与实践, 2006, 12 (12): 1013
Leading Group for the Second China National Sample Survey on Disability, National Bureau of Statistics of the People’s Republic of China Communique on major statistics of the second china national sample survey on disability[J]. Chinese Journal of Rehabilitation Theory and Practice, 2006, 12 (12): 1013
doi: 10.3969/j.issn.1006-9771.2006.12.001
[2]   ASBECK A T, DE ROSSI S M M, GALIANA I, et al Stronger, smarter, softer: next-generation wearable robots[J]. IEEE Robotics and Automation Magazine, 2014, 21 (4): 22- 33
doi: 10.1109/MRA.2014.2360283
[3]   COLOMBO G, WIRZ M, DIETZ V Driven gait orthosis for improvement of locomotor training in paraplegic patients[J]. Spinal Cord, 2001, 39 (5): 252- 255
doi: 10.1038/sj.sc.3101154
[4]   BANALA S K, KIM S H, AGRAWAL S K, et al Robot assisted gait training with active leg exoskeleton (ALEX)[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2009, 17 (1): 2- 8
doi: 10.1109/TNSRE.2008.2008280
[5]   WINFREE K N, STEGALL P, AGRAWAL S K. Design of a minimally constraining, passively supported gait training exoskeleton: ALEX II [C]// 2011 IEEE International Conference on Rehabilitation Robotics . Zurich: IEEE, 2011: 1–6.
[6]   ASBECK A T, DE ROSSI S M M, HOLT K G, et al A biologically inspired soft exosuit for walking assistance[J]. The International Journal of Robotics Research, 2015, 34 (6): 744- 762
doi: 10.1177/0278364914562476
[7]   WEHNER M, QUINLIVAN B, AUBIN P M, et al. A lightweight soft exosuit for gait assistance [C]// 2013 IEEE International Conference on Robotics and Automation . Karlsruhe: IEEE, 2013: 3362–3369.
[8]   PARK J, PARK H, KIM J Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography (sEMG) signals[J]. Journal of Biomechanical Science and Engineering, 2017, 12 (2): 16- 00595
[9]   GASPARRI G M, BAIR M O, LIBBY R P, et al. Verification of a robotic ankle exoskeleton control scheme for gait assistance in individuals with cerebral palsy [C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) . Madrid: IEEE, 2018: 4673–4678.
[10]   CHEN L, CHEN C, WANG Z, et al A novel lightweight wearable soft exosuit for reducing the metabolic rate and muscle fatigue[J]. Biosensors, 2021, 11 (7): 215
doi: 10.3390/bios11070215
[11]   BAE J, SIVIY C, ROULEAU M, et al. A lightweight and efficient portable soft exosuit for paretic ankle assistance in walking after stroke [C] // 2018 IEEE International Conference on Robotics and Automation (ICRA) . Brisbane: IEEE, 2018: 2820–2827.
[12]   QUINLIVAN B T, LEE S, MALCOLM P, et al Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit[J]. Science Robotics, 2017, 2 (2): 4416
doi: 10.1126/scirobotics.aah4416
[13]   DING Y, KIM M, KUINDERSMA S, et al Human-in-the-loop optimization of hip assistance with a soft exosuit during walking[J]. Science Robotics, 2018, 3 (15): 5438
doi: 10.1126/scirobotics.aar5438
[14]   SHAN H, JIANG C, MAO Y, et al. Design and control of a wearable active knee orthosis for walking assistance [C]// 2016 IEEE 14th International Workshop on Advanced Motion Control (AMC) . Auckland: IEEE, 2016: 51–56.
[15]   ZHANG Q, SHEN X, WANG X, et al. Development of a small clamper for tendon-sheath artificial muscle [C]// 2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) . Stuttgart: IEEE, 2018: 1–6.
[16]   郑进忠. 踝关节柔性外骨骼设计与控制研究[D]. 哈尔滨: 哈尔滨工业大学, 2018.
ZHENG Jinzhong. Research on the design and control of flexible ankle exoskeleton [D]. Harbin: Harbin Institute of Technology, 2018.
[17]   NGUYEN N D, BUI D T, TRUONG P H, et al Classification of five ambulatory activities regarding stair and incline walking using smart shoes[J]. IEEE Sensors Journal, 2018, 18 (13): 5422- 5428
doi: 10.1109/JSEN.2018.2837674
[18]   叶中. 面向踝关节康复训练的柔性外骨骼机器人研究[D]. 苏州: 苏州大学, 2022.
YE Zhong. Research on soft exoskeleton robot for ankle rehabilitation training [D]. Suzhou: Soochow University, 2022.
[19]   蔡自兴. 机器人学[M]. 北京: 清华大学出版社, 2000.
[20]   CHRISTIAN O, RANJAN M, YOSHIHIKO N. Unified impedance and admittance control [C]// 2010 IEEE International Conference on Robotics and Automation (ICRA) . Anchorage: IEEE, 2010: 554–561.
[21]   余红刚. 下肢柔性外骨骼的研究与设计[D]. 成都: 电子科技大学, 2020.
YU Honggang. Research and design of flexible exoskeleton of lower extremity [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[22]   张浩. 柔性膝关节外骨骼结构设计和控制系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
ZHANG Hao. Structural design of flexible knee exoskeleton and control system research [D]. Harbin: Harbin Institute of Technology, 2020.
[1] Can-jun YANG,Zhen-zhe PENG,Ling-hui XU,Wei YANG. Design of flexible knee-joint protection exoskeleton and walking assistance method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 213-221.
[2] Zi-lin TANG,Xiao GAO,Xiao-hui XIAO. Variable stiffiness control for human-robot cooperative transportation based on imitation learning[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2091-2099.
[3] GUO Chao, HOU Zeng-xuan, YANG Guang-qing, ZHENG Shuan-zhu. Hairy brush modeling using force feedback technology[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1735-1744.
[4] GUO Chao, HOU Zeng xuan, YANG Guang qing, ZHENG Shuan zhu. Ink diffusion simulation using force feedback technology[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1695-1702.
[5] WEI Chun-yu, ZHOU Xiao-jun, WEI Yan-ding, LI Jian-jun. Energy feedback regulation of automotive
driving simulator steering wheel
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(2): 244-248.