Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1655-1666    DOI: 10.3785/j.issn.1008-973X.2023.08.018
    
Active adaptive online trajectory prediction for robotic grinding on surface without prior model
Wan-jin GUO1,2,3(),Wu-duan ZHAO1,Su-yang YU1,Li-jun ZHAO2,4,Chu-qing CAO3,4
1. Key Laboratory of Road Construction Technology and Equipment, Ministry of Education, Chang’an University, Xi’an 710064, China
2. State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
3. Post-Doctoral Research Center, Wuhu HIT Robot Technology Research Institute Co. Ltd, Wuhu 241007, China
4. Yangtze River Delta HIT Robot Technology Research Institute, Wuhu 241007, China
Download: HTML     PDF(4891KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A compliant floating grinding force-controlled end-effector was designed, in order to solve the problem of the insufficient compliance of industrial robot grinding. Also, an active adaptive online trajectory prediction method of robotic grinding for the workpiece surface without a prior model was proposed to address the poor adaptability problem in robotic grinding trajectory prediction for this kind of surface. The direction of the surface normal is predicted by the proposed method according to the contact state between the grinding tool and the workpiece, and the interception line of the directed feed plane and the surface tangent plane is used as the feed guide, the pose of the end-effector is obtained adaptively, so that the surface normal of the end-effector is actively tracked by the axis of the spindle in real time, and the active adaptive online trajectory prediction is implemented for the curved workpiece without a prior model. The effectiveness of the proposed method was verified by simulation analysis and robotic experiment. The maximum comprehensive position error and the surface normal tracking error were 0.506 mm and 4.912°, respectively. The proposed method can provide an online trajectory prediction method for robotic grinding on surface workpieces without the prior model.



Key wordsindustrial robot      surface without prior model      online trajectory prediction      surface normal tracking      robotic grinding     
Received: 09 November 2022      Published: 31 August 2023
CLC:  TP 242.2  
Fund:  国家自然科学基金资助项目(52275005);中央高校基本科研业务费专项资金资助项目(300102253201);中国博士后科学基金资助项目(2022M722435);哈尔滨工业大学机器人技术与系统国家重点实验室开放研究资助项目(SKLRS-2020-KF-08);安徽省教育厅科学研究重点资助项目(KJ2020A0364)
Cite this article:

Wan-jin GUO,Wu-duan ZHAO,Su-yang YU,Li-jun ZHAO,Chu-qing CAO. Active adaptive online trajectory prediction for robotic grinding on surface without prior model. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1655-1666.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.018     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1655


无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法

为了解决工业机器人打磨的作业柔顺性不足问题,设计了机器人柔顺浮动打磨力控末端执行器. 为了解决无先验模型曲面工件的机器人打磨轨迹自适应性较差的问题,提出无先验模型曲面的机器人打磨主动自适应在线轨迹预测方法. 该方法根据打磨工具与工件的接触状态预测曲面法线方向,以有向进给平面与曲面切平面的截交线作为进给导向,自适应在线预测机器人打磨系统末端执行器的位姿,使末端执行器主轴轴线实时主动跟踪曲面法线,实现对无先验模型曲面工件的机器人打磨轨迹的主动自适应在线预测. 通过仿真分析和实验验证了所提出方法的有效性,最大综合位置预测误差与曲面法线跟踪误差分别为0.506 mm和4.912°. 所提出方法可以为无先验模型曲面工件的机器人打磨提供在线轨迹预测.


关键词: 工业机器人,  无先验模型曲面,  在线轨迹预测,  曲面法线跟踪,  机器人打磨 
Fig.1 Compliant floating grinding force-controlled end-effector
Fig.2 Virtual prototype of robotic grinding system
Fig.3 Simplified model of position control system and force controller for end-effector
Fig.4 Block diagram of normal grinding force control based on force error
Fig.5 Schematic diagram of angle between axis of spindle and gravity vector
Fig.6 Block diagram of normal grinding force control based on force error (with gravity compensation)
Fig.7 Schematic diagram of directional feed plane
Fig.8 Instantaneous force analysis of robotic grinding
Fig.9 Block diagram of active adaptive online trajectory prediction method of robotic grinding on surface without prior model
Fig.10 Relationship between feed direction and surface normal
Fig.11 Schematic diagram of feeding process
类别 位置预测 姿态预测(法线跟踪预测) 法向力跟踪
误差项 $ \Delta x $/mm $ \Delta y $/mm $ \Delta z $/mm $ \Delta d $/mm $ \Delta \alpha $/(°) $ \Delta \beta $/(°) $ \Delta \gamma $/(°) $ \Delta \delta $/(°) $\Delta {F_{\text{n} } ^{\max }}$/N $ {\Delta {\bar F_{\text{n}}}} $/N $\Delta {F_{\text{n} } ^{\rm{s} } }$
导纳控制 0.342 0.243 0.532 0.506 4.086 2.787 2.057×10?7 4.912 0.648 ?0.071 0.129
PID控制 0.128 0.248 0.422 0.677 4.058 2.767 5.136×10?8 4.946 0.905 0.044 0.024
Tab.1 Simulation results of adaptive online trajectory prediction
Fig.12 Position prediction error of active adaptive online trajectory prediction
Fig.13 RPY angle prediction and angle prediction error with admittance controller
Fig.14 RPY angle prediction and angle prediction error with PID controller
Fig.15 Surface normal tracking error
Fig.16 Reaction force tracking curve of a sinusoidal surface with two different force controllers
Fig.17 Experimental platform of robotic grinding system
Fig.18 Cast iron workpiece with circular frustum surface
Fig.19 Experiment of active adaptive online trajectory prediction
Fig.20 RPY angle prediction for circular frustum surface on platform experiment
Fig.21 Position prediction for circular frustum surface on platform experiment
Fig.22 Normal grinding force tracking curve on platform experiment
[1]   YANG Z W, XI F F, WU B A shape adaptive motion control system with application to robotic polishing[J]. Robotics and Computer-Integrated Manufacturing, 2005, 21 (4/5): 355- 367
[2]   LI W L, XIE H, ZHANG G, et al 3-D shape matching of a blade surface in robotic grinding applications[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21 (5): 2294- 2306
doi: 10.1109/TMECH.2016.2574813
[3]   REN X Y, CHEN G D, WANG Z, et al. Polishing path planning based on point cloud[C]// Proceedings of the 2020 the 4th International Conference on Innovation in Artificial Intelligence (ICIAI 2020). Xiamen: Association for Computing Machinery, 2020: 222-228.
[4]   PRINCELY F L, SELVARAJ T Vision assisted robotic deburring of edge burrs in cast parts[J]. Procedia Engineering, 2014, 97: 1906- 1914
doi: 10.1016/j.proeng.2014.12.344
[5]   ZHEN X, SENG J C Y, SOMANI N. Adaptive automatic robot tool path generation based on point cloud projection algorithm[C]// 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). Zaragoza: IEEE, 2019: 341-347.
[6]   ZHAN J M, YU S A new aspheric surfaces polishing by parallel orthogonality movement/force servomechanism[J]. Journal of Manufacturing Science and Engineering, 2011, 133 (3): 4004140
[7]   KIGUCHI K, FUKUDA T Position/force control of robot manipulators for geometrically unknown objects using fuzzy neural networks[J]. IEEE Transactions on Industrial Electronics, 2000, 47 (3): 641- 649
doi: 10.1109/41.847905
[8]   JEON S W, AHN D S, BAE H J, et al. Object contour following task based on integrated information of vision and force sensor[C]// 2007 International Conference on Control, Automation and Systems. Seoul: IEEE, 2007: 1040-1045.
[9]   LI J, GUAN Y S, CHEN H W, et al Real-time normal contact force control for robotic surface processing of workpieces without a priori geometric model[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119 (3): 2537- 2551
[10]   OBA Y, KAKINUMA Y Simultaneous tool posture and polishing force control of unknown curved surface using serial-parallel mechanism polishing machine[J]. Precision Engineering, 2017, 49: 24- 32
doi: 10.1016/j.precisioneng.2017.01.006
[11]   PRESTON F The theory and design of plate glass polishing machines[J]. Journal of Glass Technology, 1927, 11 (44): 214- 256
[12]   孙逸翔, 陈卫东 基于运动预测和阻抗控制的未知受限机构操作[J]. 机器人, 2011, 33 (5): 563- 569
SUN Yi-xiang, CHEN Wei-dong Operating unknown constrained mechanisms based on motion prediction and impedance control[J]. Robot, 2011, 33 (5): 563- 569
[13]   MA Z, POO A-N, ANG JR M H, et al Design and control of an end-effector for industrial finishing applications[J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 240- 253
doi: 10.1016/j.rcim.2018.04.010
[14]   TIAN F J, LI Z G, LV C, et al Polishing pressure investigations of robot automatic polishing on curved surfaces[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87 (1): 639- 646
[15]   葛吉民, 邓朝晖, 李尉, 等 机器人磨抛力柔顺控制研究进展[J]. 中国机械工程, 2021, 32 (18): 2217- 2230
GE Ji-min, DENG Zhao-hui, LI Wei, et al Research progresses of robot grinding and polishing force compliance controls[J]. China Mechanical Engineering, 2021, 32 (18): 2217- 2230
doi: 10.3969/j.issn.1004-132X.2021.18.011
[16]   LI J, GUAN Y S, CHEN H W, et al A high-bandwidth end-effector with active force control for robotic polishing[J]. IEEE Access, 2020, 8: 169122- 169135
doi: 10.1109/ACCESS.2020.3022930
[17]   MOHAMMAD A E K, HONG J, WANG D W Design of a force-controlled end-effector with low-inertia effect for robotic polishing using macro-mini robot approach[J]. Robotics and Computer-Integrated Manufacturing, 2018, 49: 54- 65
doi: 10.1016/j.rcim.2017.05.011
[18]   HOGAN N. Impedance control: an approach to manipulation[C]// 1984 American Control Conference. San Diego: IEEE, 1984: 304-313.
[19]   黄玲涛, 王彬, 倪水, 等 基于力传感器重力补偿的机器人柔顺控制研究[J]. 农业机械学报, 2020, 51 (3): 386- 393
HUANG Ling-tao, WANG Bin, Ni Shui, et al Robot compliant control based on force sensor gravity compensation[J]. Journal of Agricultural Machinery, 2020, 51 (3): 386- 393
doi: 10.6041/j.issn.1000-1298.2020.03.045
[20]   OTT C, MUKHERJEE R, NAKAMURA Y. Unified impedance and admittance control[C]// 2010 IEEE International Conference on Robotics and Automation. Anchorage: IEEE, 2010: 554-561.
[21]   曾令城, 李明富, 杨真真, 等 基于先验速度修正的工业机器人曲面跟踪柔顺控制[J]. 机械工程学报, 2022, 58 (1): 41- 51
ZENG Ling-cheng, LI Ming-fu, YANG Zhen-zhen, et al Compliant control of industrial robot surface tracking based on priori velocity correction[J]. Journal of Mechanical Engineering, 2022, 58 (1): 41- 51
[22]   JOHNSON K L One hundred years of Hertz contact[J]. Proceedings of the Institution of Mechanical Engineers, 1982, 196 (1): 363- 378
doi: 10.1243/PIME_PROC_1982_196_039_02
[23]   DING Y F, MIN X P, FU W W, et al Research and application on force control of industrial robot polishing concave curved surfaces[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233 (6): 1674- 1686
doi: 10.1177/0954405418802309
[24]   LI J, ZHU H F, ZHANG T, et al Automatic generation of auxiliary cutting paths based on sheet material semantic information[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106 (9): 3787- 3797
[25]   郭万金. 复杂形状零部件打磨机器人研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
GUO Wan-jin. Research on robot manipulator for complex shaped parts deburring[D]. Harbin: Harbin Institute of Technology, 2017.
[26]   张铁, 肖蒙, 邹焱飚, 等 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报:工学版, 2019, 53 (10): 1865- 1873
ZHANG Tie, XIAO Meng, ZOU Yan-biao, et al Research on robot constant force control of surface tracking based on reinforcement learning[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (10): 1865- 1873
[27]   李琳, 肖佳栋, 张铁, 等 基于自适应迭代的机器人曲面恒力跟踪[J]. 北京航空航天大学学报, 2019, 45 (4): 641- 649
LI Lin, XIAO Jia-dong, ZHANG Tie, et al Constant-force curved-surface-tracking with robotic manipulator based on adaptive iterative algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45 (4): 641- 649
doi: 10.13700/j.bh.1001-5965.2018.0441
[1] Hao-ran MA,Ya-bin DING. Calibration method of laser displacement sensor based on binocular vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1634-1642.
[2] Da-zhao DONG,Guan-hua XU,Ji-liang GAO,Yue-tong XU,Jian-zhong FU. Online correction algorithm for posture by robot assembly based on machine vision[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 145-152.
[3] Ying-jie GUO,Fan GU,Hui-yue DONG,Hai-jin WANG. Prediction and compensation of robot deformation under pressure force of pressure foot[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1457-1465.
[4] Yi-xiong FENG,Kang-jie LI,Yi-cong GAO,Hao ZHENG. Corner recognition of industrial robot contour curve for visual servoing[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1449-1456.
[5] Chen-tao MAO,Zhang-wei CHEN,Xiang ZHANG,Hong-fei ZU. Kinematic calibration for robots based on relative accuracy[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1316-1324.
[6] Chen-yang PU,Zuo-jun LIU,Shuang PANG,Yan ZHANG. Research and application of iterative learning control with knowledge inheritance[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(7): 1340-1348.
[7] DONG Hui-yue, SUN Qiang, GUO Ying-jie, ZHAO An-an, ZHU Wei-dong. Vibration analysis and suppression in robotic hole chamfering process[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2243-2252.
[8] WANG Chen-xue, PING Xue-liang, XU Chao. Closed loop calibration of industrial robot for solving constraint plane wandering[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(11): 2110-2119.
[9] HE Xue-jun, WANG Jin, LU Guo-dong, LIU Zhen-yu, CHEN Li, JIN Jing. 3D head portrait sculpture by industrial robot based on triangular mesh slicing and collision detection[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1104-1110.
[10] HE Xue jun, WANG Jin, LU Guo dong, CHEN Li. Contour-parallel tool path linking method for sections with lake-including islands[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1654-1661.
[11] HE Xue-jun, WANG Jin, LU Guo-dong, CHEN Li.
Optimization of robot image drawing sequence based on ant colony algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1139-1145.
[12] DONG Hui yue, ZHU Ling sheng, ZHANG Ming, LI Shao bo, LUO Shui jun. Orbital milling method of aircraft skins trimming[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2033-2039.
[13] LIU Chu-Hui, TAO Bao-Guo, KE Yang-Lin. Study on offline programming of industrial robot for cutting process[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(3): 426-431.