Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (8): 1644-1654    DOI: 10.3785/j.issn.1008-973X.2023.08.017
    
Design on electromagnetic energy regenerative dynamic vibration absorber for vehicles
Heng-jia ZHU1,2(),Si-yuan TIAN1,2,Shuang-bao LI3,Wei ZHANG1,2,*()
1. College of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
2. Aviation Special Ground Equipment Research Base, CAAC, Tianjin 300300, China
3. Research Institute of Science and Technology, Civil Aviation University of China, Tianjin 300300, China
Download: HTML     PDF(3816KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A quarter vehicle dynamic model with electromagnetic energy regenerative dynamic vibration absorber (EMER-DVA) on the sprung mass was established, considering the coil mass, inductance, resistance, and coupling effects between the mechanical vibrating system and the electromagnetic energy recovery device. The parameter matching design for EMER-DVA was obtained based on the dynamic vibration absorber (DVA) principle and dynamical stiffness characteristics of the electromagnetic energy regenerative system. The amplitude-frequency behaviors in terms of body acceleration, suspension deflection and output power of the vehicles with DVA, EMER-DVA and non-DVA were compared in frequency domain. The time-domain vibration and energy recovery performances of the vehicles with EMER-DVA and non-DVA were analyzed under sinusoidal and random road displacement excitation conditions. Results show that, by comparing with the vehicle with non-DVA, EMER-DVA could reduce the vehicle body vibration acceleration and suspension dynamic deflection by 17.8% and 8.7%, respectively, at the natural frequency of the sprung mass. And the mean values of the above responses were decreased by 3.2% and 2.7% at different velocities, respectively, under the C-class random road condition. In addition, the mean values of output power and EMER-DVA deflection were 0.98 W and 11.8 mm, respectively. These values were 4.5%, 3.1%, 2.8 W and 21.3 mm, respectively, under the D-class random road condition. It indicates that the EMER-DVA may effectively recover the vibration energy while improving the vehicle ride comfort. Bench test of the EMER-DVA was conducted, and the corresponding experimental results agreed well with that of the numerical method, which validated the proposed dynamical model of the EMER-DVA.



Key wordsdynamic vibration absorber      vibration energy recovery      multifield coupling      vehicle system dynamics      ride comfort     
Received: 26 September 2022      Published: 31 August 2023
CLC:  TH 113  
  U 461.4  
Fund:  国家自然科学基金青年科学基金资助项目(12002367);国家自然科学基金民航联合研究基金重点支持项目(U2033208);国家自然科学基金资助项目(12172376)
Corresponding Authors: Wei ZHANG     E-mail: hjzhu@cauc.edu.cn;weizhang@cauc.edu.cn
Cite this article:

Heng-jia ZHU,Si-yuan TIAN,Shuang-bao LI,Wei ZHANG. Design on electromagnetic energy regenerative dynamic vibration absorber for vehicles. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1644-1654.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.08.017     OR     https://www.zjujournals.com/eng/Y2023/V57/I8/1644


车辆电磁馈能式动力吸振器设计

考虑线圈质量、电感、电阻以及机械振动系统与电磁式能量回收装置之间耦合作用,建立装有簧上电磁馈能式动力吸振器(EMER-DVA)的四分之一车辆动力学模型. 基于动力吸振原理及电磁馈能系统动刚度特性获得EMER-DVA参数匹配设计. 对比分析传统式动力吸振器(DVA)、EMER-DVA和无DVA车辆的车身振动加速度、悬架动挠度及输出功率的幅频特性,以及在正弦位移、随机位移激励工况下EMER-DVA和无DVA车辆的时域振动特性和振动能量回收性能. 结果表明,EMER-DVA使车身振动加速度、悬架动挠度振动传递率在悬架固有频率处分别降低17.8%和8.7%. 在C级随机不平路面、不同车速下,车身振动加速度、悬架动挠度均值降低3.2%、2.7%,输出功率、EMER-DVA挠度均值分别为0.98 W、11.8 mm;在D级随机不平路面下,相应参数分别为4.5%、3.1%、2.8 W、21.3 mm. 可以看出,EMER-DVA在提高车辆行驶平顺性的同时可以有效回收振动能量.开展EMER-DVA台架振动试验,试验结果与数值计算结果较吻合,验证了本研究EMER-DVA动力学模型的准确性.


关键词: 动力吸振器,  振动能量回收,  多场耦合,  车辆动力学,  平顺性 
Fig.1 Dynamical model of a quarter vehicle with EMER-DVA installed on sprung mass
Fig.2 Sectional view of induction coil
变量 物理含义 数值 变量 物理含义 数值
m1 /kg 簧下质量 40 Z 电路电阻 100
m2 /kg 簧上质量 380 Li /H 线圈电感 0.017
k1 /(N·m?1) 轮胎刚度系数 180000 N /圈 线圈圈数 6000
k2 /(N·m?1) 悬架刚度系数 20000 BR /T 相对磁感应强度 0.02
c1 / (N·s·m?1) 轮胎阻尼系数 300 r /m 线圈导线半径 0.001
c2 /(N·s·m?1) 悬架阻尼系数 1300 Rc /m 线圈平均半径 0.16
M1 /kg 磁块质量 1 h /m 线圈高度 0.32
Ri 线圈内阻 5 c /m 线圈径向厚度 0.02
Tab.1 Parameters of mechanical electromagnetic coupling dynamical model
Fig.3 Amplitude-frequency characteristics for vibration responses of vehicle with DVA relative to harmonic displacement input
Fig.4 Electromagnetic dynamical characteristics of EMER-DVA
变量 物理含义 数值
M2 /kg 线圈质量 20
k3/(N·m?1 EMER-DVA刚度系数 700
c3/(N·s·m?1 EMER-DVA阻尼系数 0
Tab.2 EMER-DVA model parameters
Fig.5 Amplitude-frequency characteristics for vibration responses of vehicle with EMER-DVA relative to harmonic displacement input
Fig.6 Amplitude-frequency characteristics of output power of vehicle with EMER-DVA relative to harmonic displacement input
Fig.7 Amplitude-frequency characteristics of dissipated power relative to harmonic displacement input
Fig.8 Amplitude-frequency characteristics comparison between output power and potential recoverable power relative to harmonic displacement input
Fig.9 Vibration responses of EMER-DVA vehicle system in time domain
Fig.10 Total dissipated power in time domain
模型 RMS( $ {\ddot x_2} $)/m·s?2 RMS( $ {f_{\text{d}}} $)/mm RMS( $ {P_{{\text{da}}}} $)/W
1/4车模型 0.273 4.7 1.983
EMER-DVA 0. 237 4.2 1.606
Tab.3 RMS values of vehicle vibration responses
Fig.11 Displacement excitations of C class random road model
Fig.12 Displacement excitations of D-class random road model
Fig.13 Dynamic responses of vehicle with EMER-DVA under different velocities and road excitation conditions
模型 路面
等级
$\overline{{\rm{RMS}}}( {\ddot x_2}) $/
(m·s?2
$ \overline{{\rm{RMS}}}({f_{\text{d}}}) $/
mm
$\overline{{\rm{RMS}}}( P) $/
W
$\overline{{\rm{RMS}}}( {f_{{\text{dd}}}}) $/
mm
1/4车模型 C 0.95 11.4
D 1.76 20.1
EMER-DVA C 0.92 11.1 0.98 11.8
D 1.68 19.5 2.8 21.3
Tab.4 Mean values of dynamic responses for vehicle system with EMER-DVA
Fig.14 Vibration bench test of a quarter car with EMER-DVA installed on sprung mass
变量/单位 物理含义 数值
m1 /kg 簧下质量 2.4
m2 /kg 簧上质量 2.5
k1 /(N·m?1 轮胎刚度系数 1000
k2 /(N·m?1 悬架刚度系数 400
M1 /kg 磁块质量 0.05
M2 /kg 线圈质量 0.5
k3 /(N·m?1 EMER-DVA刚度系数 80
Ri 线圈电阻 5
Z 电路电阻 100
BR /T 相对磁感应强度 0.02
Tab.5 System parameters of vehicle with EMER-DVA for bench test
Fig.15 Input and dynamic responses of vehicle with EMER-DVA in bench test
RMS( $ {\ddot x_2} $)/(m·s?2 RMS( $ u $)/V
理论模型 0.393 1.152
台架试验 0.406 1.232
Tab.6 RMS values of vehicle dynamical responses for theoretical model and bench test
[1]   郎君, 申永军, 杨绍普 一种半主动动力吸振器参数优化及性能比较[J]. 振动与冲击, 2019, 38 (17): 172- 177
LANG Jun, SHEN Yong-jun, YANG Shao-pu Parametric optimization and performance comparison for 2 semi-active Voigt DVAs[J]. Journal of Vibration and Shock, 2019, 38 (17): 172- 177
doi: 10.13465/j.cnki.jvs.2019.17.023
[2]   潘公宇, 于海浪 基于遗传算法的悬架动力吸振器优化[J]. 制造业自动化, 2014, 36 (20): 82- 92
PAN Gong-yu, YU Hai-lang Optimization of suspension dynamic absorbers based on genetic algorithm[J]. Manufacturing Automation, 2014, 36 (20): 82- 92
doi: 10.3969/j.issn.1009-0134.2014.20.022
[3]   周子博, 申永军, 杨绍普 含放大机构的三要素型动力吸振器的H∞优化 [J]. 振动与冲击, 2022, 41 (5): 158- 165
ZHOU Zi-bo, SHEN Yong-jun, YANG Shao-pu H∞ optimization of 3-factor types dynamic vibration absorber with amplification mechanism [J]. Journal of Vibration and Shock, 2022, 41 (5): 158- 165
[4]   MEHMET A Fuzzy logic control of vibrations due to interaction one DOF vehicle suspension and flexible structure with tuned mass damper[J]. Journal of Smart Systems Research, 2020, 1 (1): 1- 10
[5]   SHAO X X, NAGHDY F, DU H P Reliable fuzzy H∞ control for active suspension of in-wheel motor driven electric vehicles with dynamic damping [J]. Mechanical Systems and Signal Processing, 2017, 87: 365- 383
doi: 10.1016/j.ymssp.2016.10.032
[6]   郭增伟, 葛耀君, 卢安平 竖弯涡振控制的调谐质量阻尼器TMD参数优化设计[J]. 浙江大学学报: 工学版, 2012, 46 (1): 8- 13
GUO Zeng-wei, GE Yao-jun, LU An-ping Parameter optimization of TMD for vortex-induced vibration control[J]. Journal of Zhejiang University: Engineering Science, 2012, 46 (1): 8- 13
[7]   王梁坤, 施卫星, 张全伍, 等 自适应多重TMD在大跨楼板结构减振中的应用[J]. 振动、测试与诊断, 2020, 40 (3): 578- 584
WANG Liang-kun, SHI Wei-xing, ZHANG Quan-wu, et al Adaptive-passive multiple tuned mass damper on large-span floor structure[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40 (3): 578- 584
doi: 10.16450/j.cnki.issn.1004-6801.2020.03.022
[8]   刘国政, 史文库, 郑煜圣 动力吸振器在驱动桥减振降噪上的应用[J]. 振动与冲击, 2018, 37 (14): 202- 207
LIU Guo-zheng, SHI Wen-ku, ZHENG Yu-sheng Application of dynamic vibration absorbers in vibration and noise reduction of drive axles[J]. Journal of Vibration and Shock, 2018, 37 (14): 202- 207
doi: 10.13465/j.cnki.jvs.2018.14.028
[9]   刘浩, 周鋐 动力吸振器在传动轴扭振控制上的应用[J]. 机电一体化, 2015, 21 (6): 36- 40
LIU Hao, ZHOU Hong Application of turned mass damper or torsional vibration of transmission shaft[J]. Mechatronics, 2015, 21 (6): 36- 40
[10]   周涛, 陈晓梅, 张永亮 动力总成动力吸振器特性研究[J]. 内燃机, 2020, 1 (4): 34- 37
ZHOU Tao, CHEN Xiao-mei, ZHANG Yong-liang Research on tuned mass damper in power assembly[J]. Internal Combustion Engines, 2020, 1 (4): 34- 37
doi: 10.3969/j.issn.1000-6494.2020.01.009
[11]   ZHU Y G, BIAN X L, SU L L, et al Ride comfort improvement with preview control semi-active suspension system based on supervised deep learning[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2021, 5 (1): 37- 47
[12]   FAN D L, DAI P S, YANG M L, et al Research on maglev vibration isolation technology for vehicle road noise control[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 6 (3): 233- 245
[13]   HROVAT D Optimal active suspension structures for quarter-car vehicle models[J]. Automatica, 1990, 26 (5): 845- 860
doi: 10.1016/0005-1098(90)90002-Y
[14]   杨晓峰, 沈钰杰, 陈龙 基于动力吸振理论的车辆ISD悬架设计与性能分析[J]. 汽车工程, 2014, 36 (10): 1262- 1277
YANG Xiao-feng, SHEN Yu-jie, CHEN Long Design and performances analysis of vehicle ISD suspension based on dynamic vibration absorber theory[J]. Automotive Engineering, 2014, 36 (10): 1262- 1277
doi: 10.19562/j.chinasae.qcgc.2014.10.021
[15]   葛正, 王维锐 车辆主动惯容式动力吸振悬架系统研究[J]. 振动与冲击, 2017, 36 (1): 167- 174
GE Zheng, WANG Wei-rui Vehicle active ISD-DVA suspension system[J]. Journal of Vibration and Shock, 2017, 36 (1): 167- 174
doi: 10.13465/j.cnki.jvs.2017.01.025
[16]   FU T. A novel kind of proportional electromagnetic dynamic vibration absorber [C]// SAE World Congress Experience 2019. Detroit: SAE, 2019.
[17]   王维锐, 吴参, 潘双夏, 等 车辆半主动悬架负刚度控制策略研究[J]. 浙江大学学报: 工学版, 2009, 43 (6): 1129- 1133
WANG Wei-rui, WU Can, PAN Shuang-xia, et al Negative stiffness-based control strategy of vehicle semi-active suspension[J]. Journal of Zhejiang University: Engineering Science, 2009, 43 (6): 1129- 1133
[18]   ZHANG K D, WU J L, ZHANG Y Q. Semi-active control of ISD In-Wheel motors suspension with dynamic vibration absorber [C]// SAE World Congress Experience 2022. Detroit: SAE, 2022.
[19]   ELVIN N G, ELVIN A A An experimentally validated electromagnetic energy harvester[J]. Journal of Sound and Vibration, 2011, 330 (10): 2314- 2324
doi: 10.1016/j.jsv.2010.11.024
[20]   KECIK K Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber[J]. Communications in Nonlinear Science and Numerical Simulation, 2021, 92: 105479
doi: 10.1016/j.cnsns.2020.105479
[21]   ZUO L, ZHANG P S Energy harvesting, ride comfort, and road handling of regenerative vehicle suspensions[J]. ASME Journal of Vibration and Acoustics, 2013, 135 (1): 48- 65
[22]   GUO S J, LIU Y L, XU L Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles[J]. Vehicle System Dynamics, 2016, 54 (7): 918- 942
doi: 10.1080/00423114.2016.1174276
[23]   白世鹏, 侯之超 动力吸振器对车辆垂向振动能量及悬架性能的影响[J]. 振动与冲击, 2020, 39 (22): 169- 174
BAI Shi-peng, HOU Zhi-chao Impact of dynamic vibration absorbers on vehicle vertical vibration energy and suspension performances[J]. Journal of Vibration and Shock, 2020, 39 (22): 169- 174
doi: 10.13465/j.cnki.jvs.2020.22.023
[24]   SMITH F L. Radiotron Designer’s Handbook 4 Edition [M]. Sydney: Wireles, 1952.
[25]   白世鹏, 侯之超 簧下调谐系统回收车辆轮胎的垂向振动能量[J]. 清华大学学报: 自然科学版, 2018, 58 (11): 1013- 1020
BAI Shi-peng, HOU Zhi-chao Vehicle tire vertical vibration energy harvesting using unsprung tuned mass damper[J]. Journal of Tsinghua University: Science and Technology, 2018, 58 (11): 1013- 1020
[26]   伍良生, 顾仲权, 张阿舟 阻尼动力吸振器减振问题的进一步研究[J]. 振动与冲击, 1994, 13 (1): 1- 7
WU Liang-sheng, GU Zhong-quan, ZHANG A-zhou A further investigation of using dynamic vibration absorber to reduce vibration[J]. Journal of Vibration and Shock, 1994, 13 (1): 1- 7
doi: 10.13465/j.cnki.jvs.1994.01.001
[27]   ANDERSSON N, ABRAHAMSSOPN T. Comparison of stimuli for nonlinear system response classification [J], SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2020, 4(3): 197-219.
[28]   ZHU H J, LIU Y H, TIAN S Y, et al. Studies on dynamic stiffness and damping of the vibration energy recovery system [C]// SAE World Congress Experience 2022. Detroit: SAE, 2022.
[29]   WANG H, LV X, ZHU H J, et al Study on vibration characteristics of the towbarless aircraft taxiing system[J]. SAE International Journal of Vehicle Dynamics, Stability, and NVH, 2022, 2 (6): 175- 188
[1] WU Zhi-jun, ZHU Shao-peng, LIU Xiao-long, QIU Bin-bin. Power performance and ride comfort analysis of electric all-terrain vehicles[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2227-2233.