Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (10): 2069-2075    DOI: 10.3785/j.issn.1008-973X.2024.10.010
    
Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network
Zhiqiang GENG1,2(),Wei CHEN1,2,Bo MA3,Yongming HAN1,2,*()
1. College of Information Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
2. Engineering Research Center of Intelligent Process Systems Engineering, Ministry of Education, Beijing 100029, China
3. College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Download: HTML     PDF(1052KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new bearing intelligent fault diagnosis method was proposed, aiming at the problems of limited feature extraction and inaccurate fault detection in traditional fault diagnosis methods. A continuous wavelet convolutional layer was constructed to replace the initial convolutional layer in the convolutional neural network (CNN) for extracting the primary features of the bearing data. The enhanced ACON activation function was used to process the extracted vibration signals. A new computational space was designed to improve the overall adaptivity of CNN. Comparative experiments of rolling bearing fault diagnosis methods based on the Case Western Reserve University bearing dataset were carried out. Experimental results showed that the fault diagnosis accuracy of the proposed method was improved by 7.45, 4.46 and 1.53 percentage points, respectively, and the convergence speed of CNN was faster compared with the traditional fault diagnosis methods based on CNN, the fast Fourier transform with CNN, the long short-term memory with CNN. In the generalization task for different working conditions, the proposed method had an average accuracy of 99.64%, demonstrating superior accuracy and generalisability.



Key wordsconvolutional neural network (CNN)      continuous wavelet      adaptive activation function      bearing      fault diagnosis     
Received: 14 January 2024      Published: 27 September 2024
CLC:  TH 133  
Fund:  国家自然科学基金资助项目(62373035, 62273025).
Corresponding Authors: Yongming HAN     E-mail: gengzhiqiang@mail.buct.edu.cn;hanym@mail.buct.edu.cn
Cite this article:

Zhiqiang GENG,Wei CHEN,Bo MA,Yongming HAN. Bearing intelligent fault diagnosis method based on continuous wavelet convolutional neural network. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2069-2075.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.10.010     OR     https://www.zjujournals.com/eng/Y2024/V58/I10/2069


基于连续小波卷积神经网络的轴承智能故障诊断方法

传统故障诊断方法存在特征提取有限和故障检测不准确的问题,为此提出新的轴承智能故障诊断方法. 构建连续小波卷积层取代卷积神经网络(CNN)中的初始卷积层,用于提取轴承数据的初级特征;使用增强ACON激活函数处理提取的振动信号;设计新的计算空间,提高CNN的整体自适应性. 在凯斯西储大学轴承数据集上开展滚动轴承故障诊断方法对比实验. 结果表明,与传统基于CNN、快速傅里叶变换-CNN、长短时记忆-CNN故障诊断方法相比,所提方法的故障诊断精度分别提高了7.45、4.46和1.53个百分点,CNN的收敛速度更快. 在不同工况的泛化任务中,所提方法的平均准确率为99.64%,准确性和泛化能力良好.


关键词: 卷积神经网络(CNN),  连续小波,  自适应激活函数,  轴承,  故障诊断 
Fig.1 Structure of convolutional neural network
Fig.2 Continuous wavelet convolutional neural network training process for vibrating signals
网络层核大小NK输出大小
输入层1024
连续小波16×128
最大池化64×1×23216×64
卷积层64×1×33232×64
最大池化64×1×23232×32
卷积层64×1×36464×32
最大池化1×26464×16
全连接1001×100
输出层1010
Tab.1 Structure parameters of continuous wavelet convolutional neural network
Fig.3 Bearing test bench[21]
故障位置标签SF/mmA工况B工况C工况
ntrntentrntentrnte
正常0400100400100400100
外圈10.18400100400100400100
20.36400100400100400100
30.53400100400100400100
内圈40.18400100400100400100
50.36400100400100400100
60.53400100400100400100
70.18400100400100400100
80.36400100400100400100
滚动90.53400100400100400100
Tab.2 Case Western Reserve University bearing dataset
Fig.4 Experimental results of bearing fault diagnosis after adding wavelet kernel
Fig.5 Experimental results of bearing fault diagnosis without adding wavelet kernel
方法Acc/%tc/ms
CNN92.4217.36
FFT-CNN95.4111.56
LSTM-CNN98.3414.32
CWCNN99.878.63
Tab.3 Comparison of bearing fault diagnosis results for different methods
Fig.6 Confusion matrix for test set bearing fault classification results
方法Acc/%
a-ba-cb-ab-cc-ac-b
CWCNN99.8299.6599.7099.5399.5599.58
WKCNN99.3298.1599.4297.7199.1498.85
GhostCNN97.1696.8997.1897.8997.1497.26
MBDS-CNN99.1497.4299.1498.4298.8599.28
ILeNet-598.5696.8698.9598.2998.8598.43
Tab.4 Diagnostic accuracy of different methods under variable operating conditions
[1]   RANDALL R B, ANTONI J Rolling element bearing diagnostics: a tutorial[J]. Mechanical Systems and Signal Processing, 2011, 25 (2): 485- 520
doi: 10.1016/j.ymssp.2010.07.017
[2]   沈保明, 陈保家, 赵春华, 等 深度学习在机械设备故障预测与健康管理中的研究综述[J]. 机床与液压, 2021, 49 (19): 162- 171
SHEN Baoming, CHEN Baojia, ZHAO Chunhua, et al Review on the research of deep learning in mechanical equipment fault prognostics and health management[J]. Machine Tool and Hydraulics, 2021, 49 (19): 162- 171
doi: 10.3969/j.issn.1001-3881.2021.19.033
[3]   JUNG H, PARK M A study of big data-based machine learning techniques for wheel and bearing fault diagnosis[J]. Journal of the Korea Academia-Industrial Cooperation Society, 2018, 19 (1): 75- 84
[4]   LEI Y, YANG B, JIANG X, et al Applications of machine learning to machine fault diagnosis: a review and roadmap[J]. Mechanical Systems and Signal Processing, 2020, 138: 106587
doi: 10.1016/j.ymssp.2019.106587
[5]   温竹鹏, 陈捷, 刘连华, 等 基于小波变换和优化CNN的风电齿轮箱故障诊断[J]. 浙江大学学报: 工学版, 2022, 56 (6): 1212- 1219
WEN Zhupeng, CHEN Jie, LIU Lianhua, et al Fault diagnosis of wind power gearbox based on wavelet transform and improved CNN[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (6): 1212- 1219
[6]   BURRIEL-VALENCIA J, PUCHE-PANADERO R, MARTINEZ-ROMAN J, et al Short-frequency Fourier transform for fault diagnosis of induction machines working in transient regime[J]. IEEE Transactions on Instrumentation and Measurement, 2017, 66 (3): 432- 440
doi: 10.1109/TIM.2016.2647458
[7]   YIN Z, HOU J Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes[J]. Neurocomputing, 2016, 174: 643- 650
doi: 10.1016/j.neucom.2015.09.081
[8]   YAN K, JI Z, LU H, et al Fast and accurate classification of time series data using extended ELM: application in fault diagnosis of air handling units[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2017, 49 (7): 1349- 1356
[9]   金列俊, 詹建明, 陈俊华, 等 基于一维卷积神经网络的钻杆故障诊断[J]. 浙江大学学报: 工学版, 2020, 54 (3): 467- 474
JIN Liejun, ZHAN Jianming, CHEN Junhua, et al Drill pipe fault diagnosis method based on one-dimensional convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (3): 467- 474
[10]   ZHAO H, SUN S, JIN B Sequential fault diagnosis based on LSTM neural network[J]. IEEE Access, 2018, 6: 12929- 12939
doi: 10.1109/ACCESS.2018.2794765
[11]   XU Y, DENG Y, ZHAO J, et al A novel rolling bearing fault diagnosis method based on empirical wavelet transform and spectral trend[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (6): 2891- 2904
[12]   HUANG X, WEN G, LIANG L, et al Frequency phase space empirical wavelet transform for rolling bearings fault diagnosis[J]. IEEE Access, 2019, 7: 86306- 86318
doi: 10.1109/ACCESS.2019.2922248
[13]   LI X, MA Z, KANG D, et al Fault diagnosis for rolling bearing based on VMD-FRFT[J]. Measurement, 2020, 155: 107554
doi: 10.1016/j.measurement.2020.107554
[14]   ZHANG N, WU L, YANG J, et al Naive bayes bearing fault diagnosis based on enhanced independence of data[J]. Sensors, 2018, 18 (2): 463
doi: 10.3390/s18020463
[15]   YE M, YAN X, JIA M Rolling bearing fault diagnosis based on VMD-MPE and PSO-SVM[J]. Entropy, 2021, 23 (6): 762
doi: 10.3390/e23060762
[16]   MA J, YU S, CHENG W Composite fault diagnosis of rolling bearing based on chaotic honey badger algorithm optimizing VMD and ELM[J]. Machines, 2022, 10 (6): 469
doi: 10.3390/machines10060469
[17]   XU G, LIU M, JIANG Z, et al Online fault diagnosis method based on transfer convolutional neural networks[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (2): 509- 520
[18]   YANG J, LIU J, XIE J, et al Conditional GAN and 2-D CNN for bearing fault diagnosis with small samples[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3525712
[19]   WANG H, XU J, YAN R, et al A new intelligent bearing fault diagnosis method using SDP representation and SE-CNN[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 69 (5): 2377- 2389
[20]   MAO G, ZHANG Z, QIAO B, et al Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions[J]. Entropy, 2022, 24 (1): 119
doi: 10.3390/e24010119
[21]   NEUPANE D, SEOK J Bearing fault detection and diagnosis using Case Western Reserve University dataset with deep learning approaches: a review[J]. IEEE Access, 2020, 8: 93155- 93178
[22]   MA N, ZHANG X, LIU M, et al. Activate or not: learning customized activation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Nashville: IEEE, 2021: 8032–8042.
[23]   尹文哲, 夏虹, 彭彬森, 等 基于FFT和CNN的滚动轴承故障诊断方法[J]. 应用科技, 2021, 48 (6): 97- 101
YIN Wenzhe, XIA Hong, PENG Binsen, et al A fault diagnosis method of rolling bearing based on FFT and CNN[J]. Applied Science and Technology, 2021, 48 (6): 97- 101
doi: 10.11991/yykj.202101004
[24]   GAO Y, PING G, LI L. An end-to-end model based on CNN-LSTM for industrial fault diagnosis and prognosis [C]// 2018 International Conference on Network Infrastructure and Digital Content . Guiyang: IEEE, 2018: 274–278.
[25]   黄海 基于WKCNN的风电机组轴承声信号故障诊断研究[J]. 电子技术与软件工程, 2023, (2): 97- 100
HUANG Hai Fault diagnosis of wind turbine bearing acoustic signal based on WKCNN[J]. Electronic Technology and Software Engineering, 2023, (2): 97- 100
[26]   HAN K, WANG Y, TIAN Q, et al. GhostCNN: more features from cheap operations [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 1580–1589.
[27]   刘恒畅, 姚德臣, 杨建伟, 等 基于多分支深度可分离卷积神经网络的滚动轴承故障诊断研究[J]. 振动与冲击, 2021, 40 (10): 95- 102
LIU Hengchang, YAO Dechen, YANG Jianwei, et al Fault diagnosis of rolling bearings based on a multi branch depth separable convolutional neural network[J]. Journal of Vibration and Shock, 2021, 40 (10): 95- 102
[1] Chenxin ZHANG,Weirong HONG,Shuiying ZHENG. Hydrostatic and hydrodynamic characteristic analysis of three-wedge gas bearing[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(9): 1970-1980.
[2] Qianying MA,Bingbing LI,Jiachao YE. Experimental study on mechanical properties of steel plate weakened laminated rubber bearings[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1436-1445.
[3] Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.
[4] Siyuan FENG,Yuchen TAO,Zhenfen JIN,Weijian ZHAO. Effects of axial compression ratio and face-bearing plate thickness on seismic performance of hybrid joints[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1185-1197.
[5] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[6] Hongzhou TANG,Jin ZHOU,Chaowu JIN,Yuanping XU. Design of axial self-inductive displacement sensor based on LC parallel resonance[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1072-1079.
[7] Shuwen DENG,Xudong SHAO,Banfu YAN,Minghong QIU. Experiment on flexure behavior of joint in negative moment area of lightweight composite bridge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 399-412.
[8] Xiao-dan CHEN,Ao WU,Rui-jie ZHAO,En-xiang XU. Rotor dynamics of impeller in a magnetic suspension bearingless centrifugal pump[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(8): 1680-1688.
[9] Xi-ze CHEN,Jun-feng JIA,Yu-lei BAI,Tong GUO,Xiu-li DU. Prediction model of axial bearing capacity of concrete-filled steel tube columns based on XGBoost-SHAP[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1061-1070.
[10] Yu-xiang WANG,Zhi-wei ZHONG,Peng-cheng XIA,Yi-xiang HUANG,Cheng-liang LIU. Compound fault decoupling diagnosis method based on improved Transformer[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 855-864.
[11] You-sheng DENG,Ai-lin FENG,Min YANG,Biao YANG,Zhi-gang YAO,Long LI. Bearing characteristics of coal gangue pile-geocell composite subgrade[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 833-841.
[12] Cong ZHANG,Zhong-ju FENG,Fu-chun WANG,Yun-hui GUAN,Fu-qiang ZHANG. Horizontal bearing characteristics of near-fault single pile based on centrifugal model test[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(3): 542-551.
[13] Yi-min XIA,Yu-hang LANG,Zhi-yong JI,Yong REN. Βearing performance of integrated cutter holder structure suitable for robot cutter change[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(2): 392-403.
[14] Yang YOU,Pei-jun WANG,Le-le SUN,Ji-hong YE,Jian JIANG. Tensile behavior of one-side bolted T-stub to tube connection at fire and post-fire circumstances[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2489-2500.
[15] Wei SUN,Heng LIU,Jian-feng TAO,Hao SUN,Cheng-liang LIU. IndRNN-1DLCNN based fault diagnosis of independent metering valve-controlled hydraulic cylinder system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(10): 2028-2041.