1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China 2. College of Civil Engineering, Tongji University, Shanghai 200092, China 3. Pile-supported Structures Research and Test Center, Xi’an University of Science and Technology, Xi’an 710054, China
The coal gangue pile, geocell and grid were used as vertical and horizontal reinforcements respectively for static load test in order to analyze the bearing capacity of coal gangue pile-geocell composite subgrade. The variation rules of tensile stress of geocell and grid, axial stress of pile and soil pressure between pile top and pile were analyzed. Results show that when the eighth load is applied, the tensile stress on the geocell increases by 67.93% compared with the geogrid, and the stress at the neutral point of the center pile and the side pile of the cell group increases by 78.22% and 30.95% respectively. The corresponding section of the neutral point was located in the middle of the pile about 50 cm from the top of the pile. Compared with the grid group, the pile-soil stress ratio of the cell group under the reinforced cushion was increased by 13.68% in the middle of the subgrade, 12.40%-13.49% in the edge of the subgrade, and 13.19% in the whole. The coal gangue pile-geocell composite structure can effectively transfer the load from the pile body to the base. The geocell reinforced cushion uniformly laterally transmits the load to the reinforced body, weakening the soil arching effect between piles and soil, and the flexible raft effect composed of geocell and cushion is more prominent.
Fig.5Arrangement of strain gauge and earth pressure cell
Fig.6Arrangement of stiffened body measuring point
Fig.7Sketch of loading and measuring
Fig.8Stress of geocell
Fig.9Stress of geogrid
Fig.10Pile stress of cell group
Fig.11Pile stress of grid group
Fig.12Pile-soil stress ratio of first layer
Fig.13Second layer stress ratio
[1]
叶阳升, 蔡德钩, 张千里, 等 高速铁路路基结构设计方法现状与发展趋势[J]. 中国铁道科学, 2021, 42 (3): 1- 12 YE Yang-sheng, CAI De-gou, ZHANG Qian-li, et al Current situation and development trend of subgrade structure design method for high-speed railway[J]. China Railway Science, 2021, 42 (3): 1- 12
doi: 10.3969/j.issn.1001-4632.2021.03.01
刘钢, 罗强, 张良, 等 基于累积变形演化状态控制的高速铁路基床结构设计计算方法[J]. 中国科学: 技术科学, 2014, 44 (7): 744- 754 LIU Gang, LUO Qiang, ZHANG Liang, et al Computational methods of high-speed railway subgrade structure design based on cumulative deformation evolution state control[J]. Scientia Sinica (Technologica), 2014, 44 (7): 744- 754
doi: 10.1360/N092014-00093
[4]
马缤辉. 土工格室+碎石桩双向增强复合地基承载特性及沉降计算研究[D]. 长沙: 湖南大学, 2012: 7-9. MA Bin-hui. The research on bearing characteristic and settlement of composite foundation bidirectionally reinforced by stone columns and geocell [D]. Changasha: Hunan University, 2012: 7-9.
[5]
李运成, 彭振斌, 何杰 夯实水泥土桩-网复合地基工作性状对比试验研究[J]. 中南大学学报: 自然科学版, 2014, 45 (10): 3531- 3535 LI Yun-cheng, PENG Zhen-bin, HE Jie Comparative experimental study on working behavior of rammed cement-soil pile-net composite foundation[J]. Journal of Central South University: Science and Technology, 2014, 45 (10): 3531- 3535
[6]
陈盛原, 叶华洋, 张伟锋, 等 路堤荷载作用下柔性桩复合地基的沉降分析[J]. 岩土力学, 2020, 41 (9): 3077- 3086 CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, et al Settlement analysis of flexible pile composite foundation under embankment load[J]. Rock and Soil Mechanics, 2020, 41 (9): 3077- 3086
doi: 10.16285/j.rsm.2019.1902
[7]
李天宝, 许家培, 刘开富 循环荷载下刚性桩对桩承加筋垫层复合地基承载性状影响[J]. 工业建筑, 2021, 51 (11): 137- 142 LI Tian-bao, XU Jia-pei, LIU Kai-fu Rigid piles effect research on the bearing behavior of composite foundation with geogrid-reinforced cushion supported by piles under cyclic loading[J]. Industrial Construction, 2021, 51 (11): 137- 142
doi: 10.13204/j.gyjzg20112307
[8]
汪海年, 张然, 周俊, 等 土工格室加筋碎石基层变形机理的数值模拟[J]. 中南大学学报: 自然科学版, 2015, 46 (12): 4640- 4646 WANG Hai-nian, ZHANG Ran, ZHOU Jun, et al Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University: Science and Technology, 2015, 46 (12): 4640- 4646
[9]
PHAM T A, DIAS D 3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments[J]. Soils and Foundations, 2021, 61 (5): 1319- 1342
doi: 10.1016/j.sandf.2021.07.002
[10]
VAN EEKELEN S J M, BEZUIJEN A, LODDER H J, et al Model experiments on piled embankments. Part I[J]. Geotextiles and Geomembranes, 2012, 32: 69- 81
doi: 10.1016/j.geotexmem.2011.11.002
[11]
赵明华, 郑玥, 刘猛, 等 考虑纵横耦合变形的土工格室加筋体变形分析[J]. 湖南大学学报: 自然科学版, 2019, 46 (9): 89- 99 ZHAO Ming-hua, ZHENG Yue, LIU Meng, et al Deformation analysis of geocell-reinforcement considering vertical-horizontal coupling distortion[J]. Journal of Hunan University: Natural Sciences, 2019, 46 (9): 89- 99
[12]
赵明华, 陈大兴, 刘猛, 等 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42 (4): 601- 609 ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (4): 601- 609
[13]
YANG Cheng-zhong, NI Kai, WANG Shu-fang Analysis of the stress characteristics of CFG pile composite foundation under irregularity condition[J]. Civil Engineering Journal, 2017, 2017 (2): 154- 166
[14]
PATEL R M, JAYALEKSHMI B R, SHIVASHANKAR R Stress distribution in basal geogrid reinforced pile-supported embankments under seismic loads[J]. Transportation Infrastructure Geotechnology, 2021, 8 (4): 516- 541
doi: 10.1007/s40515-021-00148-9
[15]
VIBHOOSHA M P, BHASI A, NAYAK S A review on the design, applications and numerical modeling of geocell reinforced soil[J]. Geotechnical and Geological Engineering, 2021, 39 (3): 4035- 4057
[16]
徐超, 宋世彤 桩承式加筋路堤土拱效应的缩尺模型试验研究[J]. 岩石力学与工程学报, 2015, 34 (Supple.2): 4343- 4350 XU Chao, SONG Shi-tong Scaled model tests of soil arching effect in geosynthetic reinforced and pile supported embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Supple.2): 4343- 4350
doi: 10.13722/j.cnki.jrme.2014.1167
[17]
徐超, 林潇, 沈盼盼 桩承式加筋路堤张力膜效应模型试验研究[J]. 岩土力学, 2016, 37 (7): 1825- 1831 XU Chao, LIN Xiao, SHEN Pan-pan Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments[J]. Rock and Soil Mechanics, 2016, 37 (7): 1825- 1831
doi: 10.16285/j.rsm.2016.07.001
[18]
芮瑞, 万亿, 陈成, 等 加筋对桩承式路堤变形模式与土拱效应影响试验[J]. 中国公路学报, 2020, 33 (1): 41- 50 RUI Rui, WAN Yi, CHEN Cheng, et al Experimental investigation on influences of geosynthetic reinforcement on deformation pattern and soil arching in piled embankments[J]. China Journal of Highway and Transport, 2020, 33 (1): 41- 50
doi: 10.3969/j.issn.1001-7372.2020.01.004
[19]
ZHOU Wan-huan, LAO Jun-yuan, HAUNG Yi-sheng, et al Group effect on soil arching in geogrid-reinforced pile-supported embankments[J]. Japanese Geotechnical Society Special Publication, 2017, 5 (2): 130- 134
doi: 10.3208/jgssp.v05.035
[20]
LEE T, LEE S, LEE I W, et al Lessons from full-scale experiments on piled embankments with different geosynthetic reinforcements[J]. KSCE Journal of Civil Engineering, 2021, 25 (2): 442- 450
doi: 10.1007/s12205-020-0625-x
[21]
詹鹏. 煤矸石型CFG模型桩的竖向极限承载力试验研究[D]. 延吉: 延边大学, 2015: 54-55. ZHAN Peng. Experimental study on vertical ultimate bearing capacity of coal gangue CFG model pile [D]. Yanji: Yanbian University, 2015: 54-55.
[22]
HUANG Yan-lin, ZHOU An Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 6627447
[23]
VERIAN K P, ASHRAF W, CAO Yi-zheng Properties of recycled concrete aggregate and their influence in new concrete production[J]. Resources, Conservation and Recycling, 2018, 2 (133): 30- 49