Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 833-841    DOI: 10.3785/j.issn.1008-973X.2023.04.021
    
Bearing characteristics of coal gangue pile-geocell composite subgrade
You-sheng DENG1,3(),Ai-lin FENG1,3,Min YANG2,Biao YANG1,3,Zhi-gang YAO1,3,Long LI1,3
1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2. College of Civil Engineering, Tongji University, Shanghai 200092, China
3. Pile-supported Structures Research and Test Center, Xi’an University of Science and Technology, Xi’an 710054, China
Download: HTML     PDF(2314KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The coal gangue pile, geocell and grid were used as vertical and horizontal reinforcements respectively for static load test in order to analyze the bearing capacity of coal gangue pile-geocell composite subgrade. The variation rules of tensile stress of geocell and grid, axial stress of pile and soil pressure between pile top and pile were analyzed. Results show that when the eighth load is applied, the tensile stress on the geocell increases by 67.93% compared with the geogrid, and the stress at the neutral point of the center pile and the side pile of the cell group increases by 78.22% and 30.95% respectively. The corresponding section of the neutral point was located in the middle of the pile about 50 cm from the top of the pile. Compared with the grid group, the pile-soil stress ratio of the cell group under the reinforced cushion was increased by 13.68% in the middle of the subgrade, 12.40%-13.49% in the edge of the subgrade, and 13.19% in the whole. The coal gangue pile-geocell composite structure can effectively transfer the load from the pile body to the base. The geocell reinforced cushion uniformly laterally transmits the load to the reinforced body, weakening the soil arching effect between piles and soil, and the flexible raft effect composed of geocell and cushion is more prominent.



Key wordsgeocell      coal gangue pile      bearing mechanism      flexible raft effect     
Received: 24 April 2022      Published: 21 April 2023
CLC:  TU 472  
Fund:  国家自然科学基金资助项目(51878554);陕西省自然科学基础研究计划重点资助项目(2018JZ5012)
Cite this article:

You-sheng DENG,Ai-lin FENG,Min YANG,Biao YANG,Zhi-gang YAO,Long LI. Bearing characteristics of coal gangue pile-geocell composite subgrade. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 833-841.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.021     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/833


煤矸石桩-土工格室复合路基承载特性

为了研究煤矸石桩-土工格室复合路基的承载性能,以煤矸石桩、土工格室及格栅分别作为竖向、水平向加筋体,开展静载试验,分析土工格室和格栅拉伸应力、桩体轴向应力以及桩顶与桩间土压力的变化规律. 研究结果表明:当施加到第8级荷载时,相较于土工格栅,土工格室上的拉应力增大67.93%,格室组中心桩与边桩中性点应力分别增大78.22%、30.95%,中性点对应截面位于桩体中部距桩顶约50 cm处;加筋垫层下方格室组的桩土应力比与格栅组相比,路基中部增大13.68%,路基边缘部分增大12.40%~13.49%,整体增大13.19%. 煤矸石桩-土工格室复合结构能够有效地将荷载由桩身传递至基底;土工格室加筋垫层均匀地将荷载横向传递至加筋体,削弱桩土间的土拱效应,土工格室与垫层构成的柔性筏板效应更突显.


关键词: 土工格室,  煤矸石桩,  承载机理,  柔性筏板效应 
Fig.1 Subgrade model
Fig.2 Subgrade filling
Fig.3 Material of model test
材料 型号 ρ/(kg·m?3) E/MPa G/MPa Rm/MPa e/%
土工格室 DTGS5 11 2750 2.36 23 ≤4.4
土工格栅 TGSG15-15 11 2100 2.36 14.5 ≤12.2
Tab.1 Parameters of geocell and geogrid
Fig.4 Arrangement of pile measuring points
Fig.5 Arrangement of strain gauge and earth pressure cell
Fig.6 Arrangement of stiffened body measuring point
Fig.7 Sketch of loading and measuring
Fig.8 Stress of geocell
Fig.9 Stress of geogrid
Fig.10 Pile stress of cell group
Fig.11 Pile stress of grid group
Fig.12 Pile-soil stress ratio of first layer
Fig.13 Second layer stress ratio
[1]   叶阳升, 蔡德钩, 张千里, 等 高速铁路路基结构设计方法现状与发展趋势[J]. 中国铁道科学, 2021, 42 (3): 1- 12
YE Yang-sheng, CAI De-gou, ZHANG Qian-li, et al Current situation and development trend of subgrade structure design method for high-speed railway[J]. China Railway Science, 2021, 42 (3): 1- 12
doi: 10.3969/j.issn.1001-4632.2021.03.01
[2]   胡一峰, 李怒放. 高速铁路无砟轨道路基设计原理[M]. 北京: 中国铁道出版社, 2010: 1-2.
[3]   刘钢, 罗强, 张良, 等 基于累积变形演化状态控制的高速铁路基床结构设计计算方法[J]. 中国科学: 技术科学, 2014, 44 (7): 744- 754
LIU Gang, LUO Qiang, ZHANG Liang, et al Computational methods of high-speed railway subgrade structure design based on cumulative deformation evolution state control[J]. Scientia Sinica (Technologica), 2014, 44 (7): 744- 754
doi: 10.1360/N092014-00093
[4]   马缤辉. 土工格室+碎石桩双向增强复合地基承载特性及沉降计算研究[D]. 长沙: 湖南大学, 2012: 7-9.
MA Bin-hui. The research on bearing characteristic and settlement of composite foundation bidirectionally reinforced by stone columns and geocell [D]. Changasha: Hunan University, 2012: 7-9.
[5]   李运成, 彭振斌, 何杰 夯实水泥土桩-网复合地基工作性状对比试验研究[J]. 中南大学学报: 自然科学版, 2014, 45 (10): 3531- 3535
LI Yun-cheng, PENG Zhen-bin, HE Jie Comparative experimental study on working behavior of rammed cement-soil pile-net composite foundation[J]. Journal of Central South University: Science and Technology, 2014, 45 (10): 3531- 3535
[6]   陈盛原, 叶华洋, 张伟锋, 等 路堤荷载作用下柔性桩复合地基的沉降分析[J]. 岩土力学, 2020, 41 (9): 3077- 3086
CHEN Sheng-yuan, YE Hua-yang, ZHANG Wei-feng, et al Settlement analysis of flexible pile composite foundation under embankment load[J]. Rock and Soil Mechanics, 2020, 41 (9): 3077- 3086
doi: 10.16285/j.rsm.2019.1902
[7]   李天宝, 许家培, 刘开富 循环荷载下刚性桩对桩承加筋垫层复合地基承载性状影响[J]. 工业建筑, 2021, 51 (11): 137- 142
LI Tian-bao, XU Jia-pei, LIU Kai-fu Rigid piles effect research on the bearing behavior of composite foundation with geogrid-reinforced cushion supported by piles under cyclic loading[J]. Industrial Construction, 2021, 51 (11): 137- 142
doi: 10.13204/j.gyjzg20112307
[8]   汪海年, 张然, 周俊, 等 土工格室加筋碎石基层变形机理的数值模拟[J]. 中南大学学报: 自然科学版, 2015, 46 (12): 4640- 4646
WANG Hai-nian, ZHANG Ran, ZHOU Jun, et al Numerical simulation of deformation mechanism of geocell reinforced gravel base course[J]. Journal of Central South University: Science and Technology, 2015, 46 (12): 4640- 4646
[9]   PHAM T A, DIAS D 3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments[J]. Soils and Foundations, 2021, 61 (5): 1319- 1342
doi: 10.1016/j.sandf.2021.07.002
[10]   VAN EEKELEN S J M, BEZUIJEN A, LODDER H J, et al Model experiments on piled embankments. Part I[J]. Geotextiles and Geomembranes, 2012, 32: 69- 81
doi: 10.1016/j.geotexmem.2011.11.002
[11]   赵明华, 郑玥, 刘猛, 等 考虑纵横耦合变形的土工格室加筋体变形分析[J]. 湖南大学学报: 自然科学版, 2019, 46 (9): 89- 99
ZHAO Ming-hua, ZHENG Yue, LIU Meng, et al Deformation analysis of geocell-reinforcement considering vertical-horizontal coupling distortion[J]. Journal of Hunan University: Natural Sciences, 2019, 46 (9): 89- 99
[12]   赵明华, 陈大兴, 刘猛, 等 考虑土拱效应影响的路堤荷载下土工格室加筋体变形分析[J]. 岩土工程学报, 2020, 42 (4): 601- 609
ZHAO Ming-hua, CHEN Da-xing, LIU Meng, et al Deformation analysis of geocell-reinforced body under embankment load considering soil arch effect[J]. Chinese Journal of Geotechnical Engineering, 2020, 42 (4): 601- 609
[13]   YANG Cheng-zhong, NI Kai, WANG Shu-fang Analysis of the stress characteristics of CFG pile composite foundation under irregularity condition[J]. Civil Engineering Journal, 2017, 2017 (2): 154- 166
[14]   PATEL R M, JAYALEKSHMI B R, SHIVASHANKAR R Stress distribution in basal geogrid reinforced pile-supported embankments under seismic loads[J]. Transportation Infrastructure Geotechnology, 2021, 8 (4): 516- 541
doi: 10.1007/s40515-021-00148-9
[15]   VIBHOOSHA M P, BHASI A, NAYAK S A review on the design, applications and numerical modeling of geocell reinforced soil[J]. Geotechnical and Geological Engineering, 2021, 39 (3): 4035- 4057
[16]   徐超, 宋世彤 桩承式加筋路堤土拱效应的缩尺模型试验研究[J]. 岩石力学与工程学报, 2015, 34 (Supple.2): 4343- 4350
XU Chao, SONG Shi-tong Scaled model tests of soil arching effect in geosynthetic reinforced and pile supported embankments[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Supple.2): 4343- 4350
doi: 10.13722/j.cnki.jrme.2014.1167
[17]   徐超, 林潇, 沈盼盼 桩承式加筋路堤张力膜效应模型试验研究[J]. 岩土力学, 2016, 37 (7): 1825- 1831
XU Chao, LIN Xiao, SHEN Pan-pan Model tests of tensile membrane effect of geosynthetic-reinforced piled embankments[J]. Rock and Soil Mechanics, 2016, 37 (7): 1825- 1831
doi: 10.16285/j.rsm.2016.07.001
[18]   芮瑞, 万亿, 陈成, 等 加筋对桩承式路堤变形模式与土拱效应影响试验[J]. 中国公路学报, 2020, 33 (1): 41- 50
RUI Rui, WAN Yi, CHEN Cheng, et al Experimental investigation on influences of geosynthetic reinforcement on deformation pattern and soil arching in piled embankments[J]. China Journal of Highway and Transport, 2020, 33 (1): 41- 50
doi: 10.3969/j.issn.1001-7372.2020.01.004
[19]   ZHOU Wan-huan, LAO Jun-yuan, HAUNG Yi-sheng, et al Group effect on soil arching in geogrid-reinforced pile-supported embankments[J]. Japanese Geotechnical Society Special Publication, 2017, 5 (2): 130- 134
doi: 10.3208/jgssp.v05.035
[20]   LEE T, LEE S, LEE I W, et al Lessons from full-scale experiments on piled embankments with different geosynthetic reinforcements[J]. KSCE Journal of Civil Engineering, 2021, 25 (2): 442- 450
doi: 10.1007/s12205-020-0625-x
[21]   詹鹏. 煤矸石型CFG模型桩的竖向极限承载力试验研究[D]. 延吉: 延边大学, 2015: 54-55.
ZHAN Peng. Experimental study on vertical ultimate bearing capacity of coal gangue CFG model pile [D]. Yanji: Yanbian University, 2015: 54-55.
[22]   HUANG Yan-lin, ZHOU An Study on mechanical properties of PET fiber-reinforced coal gangue fine aggregate concrete[J]. Geofluids, 2021, 6627447
[23]   VERIAN K P, ASHRAF W, CAO Yi-zheng Properties of recycled concrete aggregate and their influence in new concrete production[J]. Resources, Conservation and Recycling, 2018, 2 (133): 30- 49
[24]   铁路路基设计规范: TB1001-2016 [S]. 北京: 中国铁道出版社, 2017.
[1] Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.
[2] ZHENG Ling-wei, XIE Xin-yu, XIE Kang-he, LI Jin-zhu, LIU Yi-min. Test and application research advance on foundation reinforcement by electro-osmosis method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1064-1073.
[3] ZANG Jun chao, ZHENG Ling wei, XIE Xin yu, CAO Li wen, LI Zhuo ming. Electro-osmosis reinforcement experiment of life source polluted soil[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 245-254.
[4] CHEN Jing hao, HUANG Jian xin, LU Sheng yong, LI Xiao dong, YAN Jian hua. Microstructure and pollutant analysis of carbon black produced by municipal solid waste open-burning[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1849-1854.
[5] TU Zhi bin, HUANG Ming feng,LOU Wen juan. Extreme load effects on bridge towerbasement system due to joint actions of wind and wave[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 813-821.
[6] LING Dao sheng, SHI Ji sen, ZHANG Ru ru, WANG Yun gang. Discontinuous patch tests in Hansbo and Hansbo’s type of methods[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2142-2150.
[7] LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1389-1394.
[8] LI Xin-liang,LI Su-zhen,SHEN Yong-gang. Stress analysis and field testing of buried pipeline under traffic load[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1976-1982.
[9] XU Ri-qing, CHANG Shuai, YU Yuan-hong, LU Jian-yang. Model of strength developedwithresponse surface methodology for solidified marine soft clay of Hangzhou[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1941-1946.
[10] LI Bei, TIAN Ye, ZHAO Ruo-yi, DUAN An, LI Zong-jin, MA Hong-yan. Microstructure and modification mechanism of polyacrylate latex modified mortars[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1345-1352.
[11] TU Zhi-bin, HUANG Ming-feng, LOU Wen-juan. Dynamic wind load combination of tall buildings based on Copula functions[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(8): 1370-1375.
[12] LI Xue-gang, XU Ri-qing, CHANG Shuai, LIAO Bin, WANG Xing-chen. Application of response surface methodology on optimizing mixture ratio of composite curing agent used to improve organic matter soil stabilization[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 843-849.
[13] YU Zhao-sheng, WANG Yu, SHAO Xue-ming,WU Teng-hu. Numerical studies on effects of neutrally buoyant large particles
on turbulent channel flow
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(1): 109-115.
[14] LIN Wei, LOU Wen-juan, SHENTU Tuan-bing, HUANG Ming-feng. Peak factor of non-Gaussian pressure process on complex
super-tall building
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(4): 691-697.
[15] XUE Wen, JIN Wei-liang, YOKOTA Hiroshi. Chloride penetrating under co-effects of initial curing and
exposure conditions
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(8): 1416-1422.