Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (12): 2364-2376    DOI: 10.3785/j.issn.1008-973X.2020.12.011
    
Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill
Song-lin YU1,2(),Han KE1,2,Liang-tong ZHAN1,2,Tao MENG3,Yun-min CHEN1,2,*(),Ce YANG4
1. Geotechnical Research Institute, Zhejiang University, Hangzhou 310058, China
2. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
3. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058
4. Hangzhou Lvnong Environment Engineering Co. Ltd, Hangzhou 310000, China
Download: HTML     PDF(2572KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The Huashan landfill in Deqing, Huzhou was investigated which had a 5-year landfill life and was in the condition of water landfill, in order to study the physical and mechanical properties of excavated soil and propose landfill methods to increase the capacity utilization rate of pit landfill and reduce the post-construction settlement. In-situ test and laboratory test indicate that the excavated soil has complex composition, low permeability, high compressibility, and the shear strength of it decreases with the increase of water mass fraction. And the compaction degree of the pit landfill, the bearing capacity of the foundation and the degree of consolidation are low. The LANDFILL program was used to analyse the settlement and the capacity of the pit landfill, and results show that the capacity utilization rate of the pit landfill is low, the post-construction settlement is large and it is not suitable to be directly used for agricultural land or construction land under the condition of water landfill. The capacity of the pit landfill can be greatly increased and the post-construction settlement can be effectively reduced by backfilling excavated soil under the condition of no water filling or lowering ground water. Results provided optimization direction, theoretical basis and data reference for the safety and capacity design of landfill, the foundation treatment and the underground building construction in excavated soil landfill areas.



Key wordsexcavated soil      pit landfill      physical and mechanical property      degree of consolidation      settlement      capacity     
Received: 20 November 2019      Published: 31 December 2020
CLC:  TU 472  
Corresponding Authors: Yun-min CHEN     E-mail: 21612014@zju.edu.cn;chenyunmin@zju.edu.cn
Cite this article:

Song-lin YU,Han KE,Liang-tong ZHAN,Tao MENG,Yun-min CHEN,Ce YANG. Engineering properties of excavated soil and analysis of post-construction settlement and capacity for pit landfill. Journal of ZheJiang University (Engineering Science), 2020, 54(12): 2364-2376.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.12.011     OR     http://www.zjujournals.com/eng/Y2020/V54/I12/2364


工程渣土的工程特性及矿坑填埋场的工后沉降和容量分析

为了研究工程渣土的物理力学特性,并提出增加矿坑填埋场容量利用率和减少工后沉降的填埋方法,对堆填年限为5 a、处于积水填埋工况的湖州德清花山填埋场进行调查研究. 通过原位测试及室内试验发现,工程渣土成分复杂,具有低渗透性、高压缩性、抗剪强度随水的质量分数增加而减小等工程特性,矿坑填埋场压实度低,地基承载力低,土体大多处于饱和状态,固结缓慢. 利用LANDFILL程序对填埋场进行沉降与容量分析,发现在积水填埋工况下,矿坑容量利用率低,且工后沉降大,不适合直接用作农业用地或建设用地;在不积水填埋条件下进行工程渣土回填或降低地下水位能大幅度提高矿坑容量,并有效减少工后沉降. 研究结果为填埋场安全及容量设计、地基处理和地下建筑物施工提供了优化方向、理论依据和数据参考.


关键词: 工程渣土,  矿坑填埋场,  物理力学特性,  固结度,  沉降,  容量 
Fig.1 Google earth satellite image of Huashan landfill in Deqing taken in March,2016
Fig.2 Survey site layout of Huashan landfill in Deqing
编号 取样深度/m 取样个数
B1 0.8~1.0、1.8~2.0、3.8~4.0、5.8~6.0、7.8~8.0、9.8~10.0、11.8~12.0、13.8~14.0、15.8~16.0、17.8~18.0、18.8~19.0 10
B2 0.8~1.0、1.8~2.0、3.8~4.0、5.8~6.0、7.8~8.0、9.8~10.0、11.8~12.0、13.8~14.0、15.8~16.0、17.8~18.0 11
B3 0.8~1.0、1.8~2.0、3.8~4.0、5.8~6.0、7.8~8.0 5
B4 0.8~1.0、1.8~2.0、3.8~4.0、5.8~6.0、7.8~8.0、9.8~10.0、11.8~12.0、13.8~14.0、15.8~16.0、17.8~18.0、19.8~20.0、21.8~22.0 12
B5 0.8~1.0、1.8~2.0、3.8~4.0、5.8~6.0、7.8~8.0、9.8~10.0、11.8~12.0、13.8~14.0、15.8~16.0、17.8~18.0、18.8~19.0 11
T1~T9 0.5 9
Tab.1 Hole and surface sampling locations
钻孔编号 土的种类 试验
类型
试样
编号
${\rho _{\rm{d}}}$ /(g?cm?3 $w $ /% ${{\rm{Sr} } }$ /% $e$
B1~B4 CL 渗透 P1 1.16 49.3 100 1.34
P2 1.30 40.1 100 1.09
P3 1.40 34.6 100 0.94
快剪 Q1 1.40 27.6 80 0.94
Q2 1.40 31.1 90 0.94
Q3 1.40 34.6 100 0.94
固结 C1 1.40 34.6 100 0.94
C2 1.16 49.3 100 1.34
B5 CLS 渗透 P4 1.20 46.1 100 1.24
P5 1.35 36.8 100 0.99
P6 1.50 29.4 100 0.79
快剪 Q4 1.50 23.5 80 0.79
Q5 1.50 26.4 90 0.79
Q6 1.50 29.4 100 0.79
固结 C3 1.50 29.4 100 0.79
C4 1.20 46.1 100 1.24
Tab.2 Parameters of remoulded soil samples for penetration test,quick shear test and consolidation test
Fig.3 Consolidation apparatus with large size
Fig.4 Grading curves for representative soil samples taken at different depths of landfill
Fig.5 Variation of dry density and degree of saturation of soil samples from each borehole with depth
Fig.6 Liquidity index distribution of soil samples
Fig.7 Compactness of soil samples from each borehole
Fig.8 Variation of compactness of soil samples from each borehole with depth
Fig.9 Strength fitting line of quick shear test for remoulded samples
Fig.10 Plot of void ratio versus overburden pressure for borehole samples in comparison with compression curves measured on representative soil samples
Fig.11 Variation of degree of consolidation of soil samples from each borehole with depth
Fig.12 Variation of excess pore water pressure from each borehole with depth
Fig.13 Results of dynamic penetration test and standard penetration test
Fig.14 Space and time discretization of landfill process
Fig.15 Three-dimension terrain model of landfill
Fig.16 Grid diagram of LANDFILL program
土的种类 工况 ds e0 γ0 /(kN?m?3 Hz1 /m ka kb γmax /(kN?m?3 σ0 / kPa α /% Hmax /m CC
CL 1 2.72 1.34 16.48 5.04 0.371 0.029 19.3 0 100 24 0.23
2 2.72 1.34 6.48 5.04 0.371 0.029 19.3 0 100 24 0.23
3 2.72 1.34 0.47 4.76 0.762 0.014 19.3 0 100 0 0.23
CLS 1 2.69 1.24 16.48 5.04 0.371 0.029 19.3 0 100 24 0.20
2 2.69 1.24 6.48 5.04 0.371 0.029 19.3 0 100 24 0.20
3 2.69 1.24 0.47 4.76 0.762 0.014 19.3 0 100 0 0.20
Tab.3 Basic physical indexes and Sowers consolidation model parameters of excavated soil in huashan landfill
Fig.17 Variations of different unit weight with depth
Fig.18 Comparison of settlement calculation results under different landfill conditions
[1]   中华人民共和国住房和城乡建设部. 建筑垃圾处理技术规范: CJJ134—2019 [S]. 北京: 中国建筑工业出版社, 2019.
[2]   张振. 深圳光明新区渣土场滑坡离心模型试验及机理分析[D]. 杭州: 浙江大学, 2018.
ZHANG Zhen. Centrifuge modeling and failure mechanism analysis of Shenzhen 12.20 catastrophic landslide [D]. Hangzhou: Zhejiang University, 2018.
[3]   LAVIGNE F, WASSMER P, GOMEZ C, et al The 21 February 2005, catastrophic waste avalanche at Leuwigajah dumpsite, Bandung, Indonesia[J]. Geoenvironmental Disasters, 2014, 1 (1): 1- 12
doi: 10.1186/s40677-014-0001-6
[4]   MERRY S M, KAVAZANJIAN E, FRITZ W U Reconnaissance of the July 10, 2000, Payatas Landfill Failure[J]. Journal of Performance of Constructed Facilities, 2005, 19 (2): 100- 107
doi: 10.1061/(ASCE)0887-3828(2005)19:2(100)
[5]   STEIAKAKIS E, KAVOURIDIS K, MONOPOLIS D Large scale failure of the external waste dump at the “South Field” lignite mine, Northern Greece[J]. Engineering Geology, 2009, 104 (3/4): 269- 279
[6]   OMRACI K, TISOT J P, PIGUET J P Stability analysis of lateritic waste deposits[J]. Engineering Geology, 2003, 68 (3): 189- 199
[7]   XU Q, PENGQ, LI W, et al The catastrophic landfill flowslide at Hongao dumpsite on 20 December 2015 in Shenzhen, China[J]. Natural Hazards and Earth System Sciences, 2017, 17 (2): 277- 290
doi: 10.5194/nhess-17-277-2017
[8]   YIN Y P, LI B, WANG W, et al Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization[J]. Engineering, 2016, 2 (2): 230- 249
doi: 10.1016/J.ENG.2016.02.005
[9]   ZHAN L T, ZHANG Z, CHEN Y M, et al The 2015 Shenzhen catastrophic landslide in a construction waste dump: reconstitution of dump structure and failure mechanisms via geotechnical investigations[J]. Engineering Geology, 2018, 238: 15- 26
doi: 10.1016/j.enggeo.2018.02.019
[10]   高瑞晓, 荣辉, 王海良, 等 800密度等级的渣土陶粒制备及性能研究[J]. 硅酸盐通报, 2007, 36 (5): 1646- 1650
GAO Rui-xiao, RONG Hui, WANG Hai-liang, et al Preparation and performance of 800 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2007, 36 (5): 1646- 1650
[11]   季维生 700密度等级渣土陶粒制备及其性能研究[J]. 硅酸盐通报, 2017, 36 (7): 2209- 2214
JI Wei-sheng Preparation and performance of 700 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36 (7): 2209- 2214
[12]   PRIYADHARSHINI P, RAMAMURTHY K, ROBINSON R G Excavated soil waste as fine aggregate in fly ash based geopolymer mortar[J]. Applied Clay Science, 2017, 146: 81- 91
doi: 10.1016/j.clay.2017.05.038
[13]   BOZHEY I, GULER E Laboratory and field testing for utilization of an excavated soil as landfill liner material[J]. Waste Management, 2006, 26 (11): 1277- 1286
doi: 10.1016/j.wasman.2005.10.014
[14]   姜南 建筑渣土的基本力学性能试验研究[J]. 山西建筑, 2004, 20 (4): 60- 63
JIANG Nan Experimental study of basic mechanics performance of construction broke bits[J]. Shanxi Architecture, 2004, 20 (4): 60- 63
doi: 10.3969/j.issn.1009-6825.2004.04.042
[15]   姚志雄 建筑渣土工程特性及路用性能研究[J]. 路基工程, 2008, (6): 109- 110
YAO Zhi-xiong Study on engineering properties and road performance of construction broke bits[J]. Subgrade Engineering, 2008, (6): 109- 110
doi: 10.3969/j.issn.1003-8825.2008.06.057
[16]   苏志刚, 郭明田, 李海坤 北京地区杂填土场地岩土工程勘察探讨[J]. 工程勘察, 2008, (增2): 34- 36
SU Zhi-gang, GUO Ming-tian, LI Hai-kun Discussion on geotechnical engineering investigation of miscellaneous filling sites in Beijing[J]. Journal Geotechnical Investigation and Surveying, 2008, (增2): 34- 36
[17]   孙剑平, 邵广彪, 江宗宝 深厚杂填土基坑位移控制设计与施工技术[J]. 岩土工程学报, 2012, 34 (增1): 576- 580
SUN Jian-ping, SHAO Guang-biao, JIANG Zong-bao Design and construction technology of displacement control in deep miscellaneous fill foundation pits[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (增1): 576- 580
[18]   乔丽平 钢管土钉在某深厚填土基坑中的应用[J]. 岩土工程学报, 2012, 34 (Suppl.1): 447- 450
QIAO Li-ping Application of soil nailing of steel tube in an excavation with deep fills[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 447- 450
[19]   胡敏云, 陈云敏, 温振统 城市垃圾填埋场垃圾土压缩变形的研究[J]. 岩土工程学报, 2001, 23 (1): 123- 126
HU Min-yun, CHEN Yun-min, WEN Zhen-tong Study on the compressibility and deformation of MSW in landfill[J]. Chinese Journal of Geotechnical Engineering, 2001, 23 (1): 123- 126
doi: 10.3321/j.issn:1000-4548.2001.01.029
[20]   陈云敏, 柯瀚 城市固体废弃物的压缩性及填埋场容量分析[J]. 环境科学学报, 2003, 23 (5): 694- 698
CHEN Yun-min, KE Han Compression characteristics of MSW and analysis of capacity for landfills[J]. Acta Scientiae Circumstantiae, 2003, 23 (5): 694- 698
doi: 10.3321/j.issn:0253-2468.2003.05.025
[21]   柯瀚, 王耀商, 陈云敏, 等 分层堆填条件下填埋场沉降计算及实例分析[J]. 岩土工程学报, 2011, 33 (7): 1029- 1035
KE Han, WANG Yao-shang, CHEN Yun-min, et al Settlement calculation of landfills under layerwise summation and case study[J]. Chinese Journal of Geotechnical Engineering, 2011, 33 (7): 1029- 1035
[22]   陈云敏, 郭淇钢, 徐晓兵, 等 饱和城市固废一维降解固结解析解[J]. 岩土工程学报, 2016, 38 (12): 2137- 2146
CHEN Yun-min, GUO Qi-gang, XU Xiao-bing, et al Analytical solutionfor one-dimensional degradation-consolidation of saturated municipal solid waste[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (12): 2137- 2146
doi: 10.11779/CJGE201612001
[23]   张楠, 朱伟, 王亮, 等 吹填泥浆中颗粒沉降-固结规律研究[J]. 岩土力学, 2013, 34 (6): 1681- 1686
ZHANG Nan, ZHU Wei, WANG Liang, et al Study of sedimentation and consolidation of soil particles in dredged slurry[J]. Rock and Soil Mechanics, 2013, 34 (6): 1681- 1686
[24]   张先伟, 杨爱武, 孔令伟, 等 天津滨海吹填泥浆的自重沉降固结特性研究[J]. 岩土工程学报, 2016, 38 (5): 769- 776
ZHANG Xian-Wei, YANG Ai-wu, KONG Ling-wei, et al Self-weight sedimentation and consolidation characteristics of hydraulic-dredged slurry in Tianjin Binhai District[J]. Chinese Journal of Geotechnical Engineering, 2016, 38 (5): 769- 776
doi: 10.11779/CJGE201605001
[25]   雷华阳, 李鸿琦, 宛子瑞, 等 大型建筑垃圾堆填工程的现场试验分析[J]. 天津大学学报, 2006, 39 (11): 46- 51
LEI Hua-yang, LI Hong-qi, WAN Zi-rui, et al Analysis of field test on a large construction waste accumulation[J]. Journal of Tianjin University, 2006, 39 (11): 46- 51
[26]   雷华阳, 李鸿琦, 宛子瑞, 等 建筑垃圾填埋场沉降计算中模型参数灵敏度分析[J]. 岩土力学, 2007, 28 (4): 675- 678
LEI Hua-yang, LI Hong-qi, WAN Zi-rui, et al Analysis of model parameters sensitivity in settlement calculation of construction waste landfill[J]. Rock and Soil Mechanics, 2007, 28 (4): 675- 678
doi: 10.3969/j.issn.1000-7598.2007.04.008
[27]   吴曼真 杂填土地基的利用[J]. 岩土工程学报, 1993, 15 (6): 103- 109
WU Man-zhen Utilization of miscellaneous land foundation[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (6): 103- 109
doi: 10.3321/j.issn:1000-4548.1993.06.014
[28]   GAO W, XU W, BIAN X, et al A practical approach for calculating the settlement and storage capacity of landfills based on the space and time discretization of the landfilling process[J]. Waste Management, 2017, 69: 202- 214
doi: 10.1016/j.wasman.2017.07.048
[29]   中华人民共和国建设部. 土工试验方法标准: GBT50123—1999 [S]. 北京: 中国计划出版社, 1999.
[30]   中华人民共和国建设部. 土的工程分类标准: GBT50145—2007 [S]. 北京: 中国计划出版社, 2008.
[31]   中华人民共和国建设部. 岩土工程勘察规范: GB50021—2001(2009) [S]. 北京: 中国建筑工业出版社, 2009.
[32]   中华人民共和国铁道部. 铁路工程地质原位测试规程: TB10018—2003 [S]. 北京: 中国铁道出版社, 2003.
[33]   中华人民共和国住房和城乡建设部. 建筑地基基础设计规范: GB50007—2011 [S]. 北京: 中国建筑工业出版社, 2011.
[34]   高武. 城市生活垃圾时间相关本构模型及填埋场服役性能研究[D]. 杭州: 浙江大学, 2018.
GAO Wu. Research on time-dependent constitutive models for municipal solid waste and service performance of landfills [D]. Hangzhou: Zhejiang University, 2018.
[35]   SOWERS G F. Settlement of waste disposal fills [C]// Proceeding of 8th International Conference Soil Mechanical and Found Engineering. Moscow: [s.n.], 1973: 207-210.
[1] Yun-liang CUI,Zhi-yuan LI,Gang WEI,Jiang CHEN,Lian-ying ZHOU. Pre-protection effect of underground comprehensive pipe gallery over proposed tunnel[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(2): 330-337.
[2] Jia-ming WU,Zi-qiang CHEN. Fault diagnosis of internal short circuit of lithium battery pack in variable low temperature environment[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(7): 1433-1439.
[3] Xing-lang FAN,Sheng-jie GU,Jia-fei JIANG,Xi WU. Computational method of punching-shear capacity of concrete slabs reinforced with FRP bars[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(6): 1058-1067.
[4] Wen-tao HU,Dou LIU,Da-xin GENG,Ning WANG,Chang-jie XU,Xing SHANGGUAN,Jie MIN. Internal force and deformation of step-tapered pile under lateral loads[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 739-747.
[5] Xiao-yan SUN,Gui TANG,Hai-long WANG,Qun WANG,Zhi-cheng ZHANG. Effect of 3D printing path on mechanical properties of arch concrete bridge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2085-2091.
[6] Jin-feng WANG,Ai-ping ZHANG,Wen-hao WANG. Effects of stud height on shear behavior of stud connectors[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2076-2084.
[7] Xue-ying BAO,Yu-xi ZHENG,Qi-cai WANG. Construction group comprehensive bearing capacity analysis of deep cutting under green construction[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 482-491.
[8] Xing-bo HAN,Yong-xu XIA,Yong-dong WANG,Fei YE. Probabilistic degradation model for tunnel lining flexural capacity[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2175-2184.
[9] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[10] WANG Zhong-jin, ZHANG Ri-hong, WANG Kui-hua, FANG Peng-fei, XIE Xin-yu, XU Han-qiang, LI Jin-zhu. Bearing characteristic of static drill rooted pile considering condition of energy carrier[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 11-18.
[11] YU Ran-ran, LIU Lian-sheng, GE Ming-hui, ZHAO Jing-wei. Performance of solar thermoelectric power generation system[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 769-774.
[12] ZHUANG Yan, CHENG Xin-ting, XIAO Heng-lin, LIU Huan-zi, ZHOU Bei-he, LI Jia-jun. Working performance of reinforced cushion in piled embankment[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2279-2284.
[13] SHI Xi-wang, LI Tie-ying, WEI Jian-wei, CHEN Jin-yong. Experimental study on horizontal hysteretic behavior of full-scale timber frame with dou-gong sets[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2322-2331.
[14] FAN Hai-gui, CHEN Zhi-ping, XU Feng, TANG Xiao-yu, SU Wen-qiang. Floating-roof tanks' distortion analysis based on measured settlement[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1824-1833.
[15] JIANG Xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and bending bearing capacity of fire-resistant steel-concrete composite beams[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1482-1493.