Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (4): 769-774    DOI: 10.3785/j.issn.1008-973X.2018.04.021
Chemical Engineering, Energy and Environmental Engineering     
Performance of solar thermoelectric power generation system
YU Ran-ran1, LIU Lian-sheng1, GE Ming-hui1,2, ZHAO Jing-wei2
1. School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China;
2. Energy Investment and Construction Limited Company, Tianjin Eco-city, Tianjin 300480, China
Download:   PDF(2652KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A mathematical model of solar thermoelectric power generation was constructed in order to use the thermoelectric power generation technology that can directly convert solar energy into electricity. The influences of concentration ratio and cooling water flow rate on net capacity and net generation efficiency of system were analyzed by considering the power consumption of the cooling system. Results show that there exist an optimal cooling water flow rate and an optimal concentration ratio which can lead to the best electricity generation performance. The maximum net capacity and net generation efficiency are 15.86 W and 5.61%, respectively. The thermal insulation of the thermoelectric generator is necessary to improve the performance of system.



Received: 06 May 2017     
CLC:  TK519  
Cite this article:

YU Ran-ran, LIU Lian-sheng, GE Ming-hui, ZHAO Jing-wei. Performance of solar thermoelectric power generation system. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 769-774.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.04.021     OR     http://www.zjujournals.com/eng/Y2018/V52/I4/769


太阳能温差发电系统的性能

建立太阳能温差发电系统的数学模型,利用温差发电技术将太阳能直接转化为电能.考虑冷却系统的功耗,分析聚焦倍率以及冷却水流量对太阳能温差发电系统的净输出功率与净发电效率的影响.结果表明,存在最优的冷却水流量及最优的聚焦倍率,使得系统发电性能最大,最大净输出功率与净发电效率分别为15.86 W和5.61%;对温差发电器热端进行必要的保温,能够提高系统的发电性能.

[1] SUDHARSHAN K Y,PRAVEEN K V,HARISH C B. Performance evaluation of a thermally concentrated solar thermo-electric generator without optical concentration[J]. Solar Energy Materials and Solar Cells,2016, 157:93-100.
[2] 陈伟,梁燕,胡长军,等. 新型温差发电装置的结构设计[J]. 热能功力工程,2016,31(1):125-128. CHEN Wei,LIANG Yan,HU Chang-jun, et al. Structure design of a new type thermoelectric generator[J]. Journal of Engineering for Thermal Energy and Power,2016,31(1):125-128.
[3] AMATYA R,RAM R J. Solar thermoelectric generator for micro-power applications[J]. Journal of Electronic Materials,2010,39(9):1735-1740.
[4] 朱冬生,吴红霞,漆小玲,等. 太阳能温差发电技术的研究进展[J]. 电源技术,2012,36(3):431-434. ZHU Dong-sheng,WU Hong-xia,QI Xiao-ling,et al. Research of progress of solar thermoelectric generation[J]. Journal of Power Sources,2012,36(3):431-434.
[5] 毛佳妮,江述帆,方奇,等. 新型太阳能温差发电集热体的传热特性[J]. 浙江大学学报:工学版,2015,49(11):2205-2213. MAO Jia-ni,JIANG Shu-fan,FANG Qi,et al. Heat transfer characteristics of novel heat collector on solar thermoelectric power generation[J]. Journal of Zhejiang University:Engineering Science,2015,49(11):2205-2213.
[6] 林比宏,陈晓航,陈金灿. 太阳能驱动半导体温差发电器性能参数的优化设计[J]. 太阳能学报,2006,27(10):1021-1026. LIN Bi-hong,CHEN Xiao-hang,CHEN Jin-can. Optimum design of the performance parameters of a solar-driven semiconductor thermoelectric generator[J]. Acta Energiae Solaris Sinica,2006,27(10):1021-1026.
[7] CHEN Gang. Theoretical efficiency of solar thermoelectric energy generators[J]. Journal of Applied Physics,2011,109:104908-104908-8.
[8] LI Peng,CAI Lan-lan,ZHAI Peng-cheng,et al. Design of a concentration solar thermoelectric generator[J]. Journal of Electronic Material,2010,39(9):1522-1530.
[9] LAURYN L B,JEFFREY S G,ERIC S T. Concentrated solar thermoelectric generators[J]. Energy and Environmental Science,2012,5:9055-9067.
[10] LI Chao,ZHANG Ming,MIAO Lei,et al. Effects of environmental factors on the conversion efficiency of solar thermoelectric co-generators comprising parabola trough collectors and thermoelectric modules without evacuated tubular collector[J]. Energy Conversion and Management,2014,86(10):944-951.
[11] FERNANDA S M,LEANDRO C S,RAQUEL N A,et al. Solar thermoelectric generator performance relative to air speed[J]. Energy Conversion and Management,2015,99:326-333.
[12] CHEN Wei-hsin, WANG Chien-chang, HUNG Chen-i, et al. Modeling and simulation for the design of thermal-concentrated solar thermoelectric generator[J]. Energy,2014,64:287-297.
[13] WU Ying-ying,WU Shuang-yin,XIAO Lan. Performance analysis of photovoltaicthermoelectric hybrid system with and without glass cover[J]. Energy Conversion and Management,2015, 93:151-159.
[14] JIAN Lin,LIAO Tian-jun,LIN Bi-hong. Performance analysis and load matching of a photovoltaic thermoelectric hybrid system[J]. Energy Conversion and Management,2015,105:891-899.
[15] MEREU S,SCIUBBA E,BEJAN A. The optimal cooling of a stack of heat generating boards with fixed pressure drop,flowrate or pumping power[J]. International Journal of Heat Mass Transfer,1993,36(15):3677-3686.
[16] HSU Cheng-ting,HUANG Gia-yeh,CHU Hsu-shen,et al. Experiments and simulations on low-temperature waste heat harvesting system by thermoelectric power generators[J]. Applied Energy,2011,88(4):1291-1297.

[1] CHEN Shu-qin, PAN Yang-yang, TAN Hong-wei. Comprehensive evaluation on regional suitability of solar water heating system in college bathrooms[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(8): 1519-1526.