Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (7): 1488-1497    DOI: 10.3785/j.issn.1008-973X.2024.07.018
    
Robust fault diagnosis method for failure sensors
Xianwei MA1(),Chaohui FAN2,Weizhi NIE3,*(),Dong LI4,Yiqun ZHU5
1. School of Future Technology, Tianjin University, Tianjin 300072, China
2. Strategic Assessments and Consultation Institute, Academy of Military Science, Beijing 100091, China
3. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
4. College of Intelligence and Computing, Tianjin University, Tianjin 300050, China
5. Metrology Center, State Grid Tianjin Marketing Service Center, Tianjin 300160, China
Download: HTML     PDF(1181KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A fault diagnosis method with corrupted feature penalties (FDCFP) was proposed to address the impact of sensor failure on fault diagnosis. The convolutional neural network was used to extract local features, and the Transformer encoder was used to further fuse global information, alleviating the influence of local sensor failures on feature learning. The self-attention masks were employed to penalize the pseudo-correlation between features introduced by the sensor failure, making the encoder attentive to the parts of the sensor data unaffected by failures. The masks were weighted at the self-attention layer to improve the model’s robustness to sensor failures in the presence of faulty data at a low complexity cost. The performance of the proposed method was verified in datasets such as CWRU, PU, SEU, and XJTU-SY. Compared to existing methods, the FDCFP achieved accuracy improvements of 5.9%, 3.1%, and 3.7% respectively on the CWRU, PU, and XJTU-SY datasets at a 0.7 data failure ratio.



Key wordssensor failure      fault diagnosis      deep learning      attention mechanism      Transformer     
Received: 12 June 2023      Published: 01 July 2024
CLC:  TP 181  
  TH 165+.3  
Fund:  国家重点研发计划资助项目(2020YFB1711700).
Corresponding Authors: Weizhi NIE     E-mail: hsienwei_ma@tju.edu.cn;weizhinie@tju.edu.cn
Cite this article:

Xianwei MA,Chaohui FAN,Weizhi NIE,Dong LI,Yiqun ZHU. Robust fault diagnosis method for failure sensors. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1488-1497.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2024.07.018     OR     https://www.zjujournals.com/eng/Y2024/V58/I7/1488


对失效传感器具备鲁棒性的故障诊断方法

针对传感器失效对故障诊断效果的影响,提出带有退化特征惩罚机制的故障诊断方法(FDCFP). 利用卷积神经网络提取局部特征,使用Transformer编码器进一步融合全局信息,缓解局部传感器失效对特征学习的影响. 引入自注意力掩码对传感器失效引入的特征伪关联性进行惩罚,使编码器更关注未受失效影响的传感器数据. 掩码在自注意力层参与权重计算,以较低的复杂度代价提高含有失效数据模型的鲁棒性. 在CWRU、PU、SEU和XJTU-SY数据集上进行FDCFP的性能验证,当数据失效比例为0.7时,FDCFP在CWRU、PU和XJTU-SY数据集上的故障诊断准确率相较于现有方法分别提升了5.9%、3.1%和3.7%.


关键词: 传感器失效,  故障诊断,  深度学习,  注意力机制,  Transformer 
Fig.1 Architecture of fault diagnosis method with corrupted feature penalties
名称输出通道核大小步长
卷积层16151
ReLU/BN
最大池化层22
卷积层3231
ReLU/BN
最大池化层22
卷积层643
自适应最大池化层
Tab.1 Parameters of one-dimensional convolutional neural network in feature extraction module
Fig.2 Calculation flow of mask self-attention
Fig.3 Attention weight distribution under different sensor failure ratio
Fig.4 Distribution of signal under different sensor failure ratio in CWRU dataset
Fig.5 Histogram of continuous missing length under different sensor failure ratio
方法Acc/%
CWRUPUSEUXJTU-SY
SVM90.43±0.7675.83±0.6764.61±0.8268.16±0.56
RF85.62±0.4560.11±0.6248.39±0.9867.36±0.44
AE92.75±0.1862.81±0.4988.39±0.3692.94±0.33
SAE95.13±0.1862.37±0.5288.31±0.4694.15±0.33
DAE94.15±0.3255.64±0.4387.82±0.5192.29±0.24
BiLSTM98.22±0.1690.39±0.1398.18±0.2798.53±0.18
CNN1d98.49±0.1291.89±0.1598.53±0.4899.23±0.32
MCNN-LSTM99.44±0.1492.55±0.3798.70±0.0899.61±0.12
FDCFP99.81±0.0296.17±0.1699.49±0.0599.93±0.05
Tab.2 Fault diagnosis accuracy of different fault diagnosis methods in four datasets
Fig.6 Effects of sensor failure on performance of different fault diagnosis methods in four datasets
Fig.7 Effects of mask self-attention on fault diagnosis accuracy
方法NP/103GFLOPs
CNN1d177.30.2743
BiLSTM948.50.3072
MCNN-LSTM235. 30.4418
FDCFP特征提取模块8.40.4009
自注意力模块20.8
分类器67.2
Tab.3 Complexity and real-time of different fault diagnosis methods
[1]   WANG J, XU C, ZHANG J, et al Big data analytics for intelligent manufacturing systems: a review[J]. Journal of Manufacturing Systems, 2022, 62: 738- 752
doi: 10.1016/j.jmsy.2021.03.005
[2]   ZHAO Y, LI T, ZHANG X, et al Artificial intelligence-based fault detection and diagnosis methods for building energy systems: advantages, challenges and the future[J]. Renewable and Sustainable Energy Reviews, 2019, 109: 85- 101
doi: 10.1016/j.rser.2019.04.021
[3]   ASKARIAN M, ESCUDERO G, GRAELLS M, et al Fault diagnosis of chemical processes with incomplete observations: a comparative study[J]. Computers and Chemical Engineering, 2016, 84: 104- 116
doi: 10.1016/j.compchemeng.2015.08.018
[4]   RAZAVI-FAR R, SAIF M, PALADE V, et al An integrated framework for diagnosing process faults with incomplete features[J]. Knowledge and Information Systems, 2022, 64: 75- 93
doi: 10.1007/s10115-021-01625-w
[5]   陈嘉宁, 杨翾, 叶承晋, 等 基于缺失数据修复的变压器在线故障诊断方法[J]. 电力系统保护与控制, 2019, 47 (15): 86- 92
CHEN Jianing, YANG Xuan, YE Chengjin, et al On-line fault diagnosis method for power transformer based on missing data repair[J]. Power System Protection and Control, 2019, 47 (15): 86- 92
doi: 10.7667/PSPC20191512
[6]   LIU R, MENG G, YANG B Y, et al Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine[J]. IEEE Transactions on Industrial Informatics, 2017, 13 (3): 1310- 1320
doi: 10.1109/TII.2016.2645238
[7]   DEVLIN J, CHANG M, LEE K, et al. BERT: pre-training of deep bidirectional Transformers for language understanding [C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies . Minneapolis: Association for Computational Linguistics, 2019: 4171–4186.
[8]   LI B, HU Y, NIE X, et al. DropKey for Vision Transformer [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Vancouver: IEEE, 2023: 22700–22709.
[9]   WU Z, WU L, MENG Q, et al. UniDrop: a simple yet effective technique to improve Transformer without extra cost [C]// Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies . [S.l.]: Association for Computational Linguistics, 2021: 3865–3878.
[10]   FENG Z, LIANG M, CHU F Recent advances in time–frequency analysis methods for machinery fault diagnosis: a review with application examples[J]. Mechanical Systems and Signal Processing, 2013, 38 (1): 165- 205
doi: 10.1016/j.ymssp.2013.01.017
[11]   钟凯. 基于多元统计分析的故障检测与诊断研究[D]. 大连: 大连理工大学, 2020.
ZHONG Kai. Multivariate statistical analysis based fault detection and diagnosis [D]. Dalian: Dalian University of Technology, 2020.
[12]   SINGH V, GANGSAR P, PORWAL R, et al Artificial intelligence application in fault diagnostics of rotating industrial machines: a state-of-the-art review[J]. Journal of Intelligent Manufacturing, 2021, 34 (3): 931- 960
[13]   VOS K, PENG Z, JENKINS C, et al Vibration-based anomaly detection using LSTM/SVM approaches[J]. Mechanical Systems and Signal Processing, 2022, 169: 108752
doi: 10.1016/j.ymssp.2021.108752
[14]   李兵, 韩睿, 何怡刚, 等 改进随机森林算法在电机轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40 (4): 1310- 1319
LI Bing, HAN Rui, HE Yigang, et al Applications of improved random forest algorithm in fault diagnosis of motor bearings[J]. Proceedings of the CSEE, 2020, 40 (4): 1310- 1319
[15]   ZHU Z, LEI Y, QI G, et al A review of the application of deep learning in intelligent fault diagnosis of rotating machinery[J]. Measurement, 2023, 206: 112346
doi: 10.1016/j.measurement.2022.112346
[16]   CUI M, WANG Y, LIN X, et al Fault diagnosis of rolling bearings based on an improved stack autoencoder and support vector machine[J]. IEEE Sensors Journal, 2021, 21 (4): 4927- 4937
doi: 10.1109/JSEN.2020.3030910
[17]   GUO X, SHEN C, CHEN L Deep fault recognizer: an integrated model to denoise and extract features for fault diagnosis in rotating machinery[J]. Applied Sciences, 2017, 7 (1): 41
[18]   WEN L, LI X, GAO L, et al A new convolutional neural network-based data-driven fault diagnosis method[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (7): 5990- 5998
doi: 10.1109/TIE.2017.2774777
[19]   WANG P, ANANYA, YAN R, et al Virtualization and deep recognition for system fault classification[J]. Journal of Manufacturing Systems, 2017, 44: 310- 316
doi: 10.1016/j.jmsy.2017.04.012
[20]   CHEN X, ZHANG B, GAO D Bearing fault diagnosis base on multi-scale CNN and LSTM model[J]. Journal of Intelligent Manufacturing, 2021, 32: 971- 987
doi: 10.1007/s10845-020-01600-2
[21]   AN Z, LI S, WANG J, et al A novel bearing intelligent fault diagnosis framework under time-varying working conditions using recurrent neural network[J]. ISA Transactions, 2020, 100: 155- 170
doi: 10.1016/j.isatra.2019.11.010
[22]   LIU H, ZHOU J, ZHENG Y, et al Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders[J]. ISA Transactions, 2018, 77: 167- 178
doi: 10.1016/j.isatra.2018.04.005
[23]   ZHAO R, WANG D, YAN R, et al Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2018, 65 (2): 1539- 1548
doi: 10.1109/TIE.2017.2733438
[24]   BAHDANAU D, CHO K, BENGIO Y. Neural machine translation by jointly learning to align and translate [C]// 3rd International Conference on Learning Representations . San Diego: [s.n.], 2015.
[25]   VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems . La Jolla: [s.n.], 2017: 6000–6010.
[26]   KHAN S, NASEER M, HAYAT M, et al Transformers in vision: a survey[J]. ACM Computing Surveys, 2022, 54 (10s): 200
[27]   PEI X, ZHENG X, WU J Rotating machinery fault diagnosis through a transformer convolution network subjected to transfer learning[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 2515611
[28]   王誉翔, 钟智伟, 夏鹏程, 等 基于改进Transformer的复合故障解耦诊断方法[J]. 浙江大学学报: 工学版, 2023, 57 (5): 855- 864
WANG Yuxiang, ZHONG Zhiwei, XIA Pengcheng, et al Compound fault decoupling diagnosis method based on improved Transformer[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (5): 855- 864
[29]   CHE Z, URUSHOTHAM S, CHO K, et al Recurrent neural networks for multivariate time series with missing values[J]. Scientific Reports, 2018, 8: 6085
doi: 10.1038/s41598-018-24271-9
[30]   SONG L, GONG D, LI Z, et al. Occlusion robust face recognition based on mask learning with pairwise differential siamese network [C]// 2019 IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 773–782.
[31]   HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition . Las Vegas: IEEE, 2016: 770–778.
[32]   SMITH W A, RANDALL R B, et al Rolling element bearing diagnostics using the Case Western Reserve University data: a benchmark study[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 100- 131
doi: 10.1016/j.ymssp.2015.04.021
[33]   LESSMEIER C, KIMOTHO J K, ZIMMER D, et al. Condition monitoring of bearing damage in electromechanical drive systems by using motor current signals of electric motors: a benchmark data set for data-driven classification [C]// European Conference of the Prognostics and Health Management Society . [S.l.]: Prognostics and Health Management Society, 2016.
[34]   SHAO S, MCALEER S, YAN R, et al Highly accurate machine gault diagnosis using deep transfer learning[J]. IEEE Transactions on Industrial Informatics, 2019, 15 (4): 2446- 2455
doi: 10.1109/TII.2018.2864759
[35]   WANG B, LEI Y, LI N, et al A hybrid prognostics approach for estimating remaining useful life of rolling element bearings[J]. IEEE Transactions on Reliability, 2020, 69 (1): 401- 412
doi: 10.1109/TR.2018.2882682
[36]   LIN W, TSAI C Missing value imputation: a review and analysis of the literature (2006–2017)[J]. Artificial Intelligence Review, 2020, 53: 1487- 1509
doi: 10.1007/s10462-019-09709-4
[37]   郭毅博, 牛猛, 王海迪, 等 基于生成对抗网络的飞机燃油数据缺失值填充方法[J]. 浙江大学学报: 理学版, 2021, 48 (4): 402- 409
GUO Yibo, NIU Meng, WANG Haidi, et al An aircraft fuel data missing value filling method with generative adversarial network[J]. Journal of Zhejiang University: Science Edition, 2021, 48 (4): 402- 409
[1] Shuhan WU,Dan WANG,Yuanfang CHEN,Ziyu JIA,Yueqi ZHANG,Meng XU. Attention-fused filter bank dual-view graph convolution motor imagery EEG classification[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1326-1335.
[2] Linrui LI,Dongsheng WANG,Hongjie FAN. Fact-based similar case retrieval methods based on statutory knowledge[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(7): 1357-1365.
[3] Jun YANG,Chen ZHANG. Semantic segmentation of 3D point cloud based on boundary point estimation and sparse convolution neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1121-1132.
[4] Yuntang LI,Hengjie LI,Kun ZHANG,Binrui WANG,Shanyue GUAN,Yuan CHEN. Recognition of complex power lines based on novel encoder-decoder network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1133-1141.
[5] Juan SONG,Longxi HE,Huiping LONG. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1161-1173.
[6] Kang HAN,Hongfei ZHAN,Junhe YU,Rui WANG. Rolling bearing fault diagnosis based on dilated convolution and enhanced multi-scale feature adaptive fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(6): 1285-1295.
[7] Zhiwei XING,Shujie ZHU,Biao LI. Airline baggage feature perception based on improved graph convolutional neural network[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 941-950.
[8] Yi LIU,Yidan CHEN,Lin GAO,Jiao HONG. Lightweight road extraction model based on multi-scale feature fusion[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 951-959.
[9] Cuiting WEI,Weijian ZHAO,Bochao SUN,Yunyi LIU. Intelligent rebar inspection based on improved Mask R-CNN and stereo vision[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1009-1019.
[10] Bo ZHONG,Pengfei WANG,Yiqiao WANG,Xiaoling WANG. Survey of deep learning based EEG data analysis technology[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 879-890.
[11] Kang FAN,Ming’en ZHONG,Jiawei TAN,Zehui ZHAN,Yan FENG. Traffic scene perception algorithm with joint semantic segmentation and depth estimation[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 684-695.
[12] Hai HUAN,Yu SHENG,Chenxi GU. Global guidance multi-feature fusion network based on remote sensing image road extraction[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 696-707.
[13] Xianglong LUO,Yafei WANG,Yanbo WANG,Lixin WANG. Structural deformation prediction of monitoring data based on bi-directional gate board learning system[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 729-736.
[14] Mingjun SONG,Wen YAN,Yizhao DENG,Junran ZHANG,Haiyan TU. Light-weight algorithm for real-time robotic grasp detection[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 599-610.
[15] Qingjie QIAN,Junhe YU,Hongfei ZHAN,Rui WANG,Jian HU. Dimension prediction method of injection molded parts based on multi-feature fusion of DL-BiGRU[J]. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 646-654.