|
|
Lightweight road extraction model based on multi-scale feature fusion |
Yi LIU( ),Yidan CHEN,Lin GAO*( ),Jiao HONG |
School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin 300384, China |
|
|
Abstract A road extraction model based on multi-scale feature fusion lightweight DeepLab V3+ (MFL-DeepLab V3+) was proposed aiming at the problems of high computational complexity and poor road extraction effect of the current semantic models used in the field of remote sensing image road extraction. The lightweight MobileNet V2 network was used to replace the original model’s Xception network as the backbone network in order to reduce the parameters of the model and the computational complexity of the model. Deep separable convolution was introduced into the Atlas spatial pyramid pooling (ASPP) module. A multi-scale feature fusion with attention (MFFA) was proposed in the decoding area in order to enhance the road extraction ability of the model and optimize the extraction effect on small road segments. Experiments based on the Massachusetts roads dataset showed that the parameter size of the MFL-DeepLab V3+ model was significantly reduced with a parameter compression of 88.67% compared to the original model. The road extraction image had clear edges, and its accuracy, recall, and F1-score were 88.45%, 86.41% and 87.42%, achieving better extraction performance compared to other models.
|
Received: 23 April 2023
Published: 26 April 2024
|
|
Fund: 天津市教委科研计划资助项目(2019KJ094). |
Corresponding Authors:
Lin GAO
E-mail: lgliuyi@163.com;gao2689@163.com
|
基于多尺度特征融合的轻量化道路提取模型
针对当前用于遥感图像道路提取领域的语义模型存在计算复杂度较高、道路提取效果不佳的问题,提出基于多尺度特征融合的轻量化道路提取模型(MFL-DeepLab V3+). 为了减少模型参数量并降低模型的计算复杂度,骨干网络选用轻量化Mobilenet V2网络代替原模型的Xception网络,在空洞空间金字塔池化(ASPP)模块中引入深度可分离卷积. 为了增强模型的道路提取能力,优化对细小路段的提取效果,在解码区提出联合注意力的多尺度特征融合(MFFA). 基于Massachusetts roads数据集的各项实验表明,MFL-DeepLab V3+模型的参数规模显著降低,较原模型参数量压缩了88.67%,道路提取图像完整,边缘清晰,精确率、召回率和F1分数分别达到88.45%、86.41%和87.42%,与其他模型相比取得了更好的提取效果.
关键词:
语义分割,
道路提取,
MFL-DeepLab V3+,
多尺度特征融合,
注意力机制
|
|
[1] |
HOU Y, LIU Z, ZHANG T, et al C-unet: complement unet for remote sensing road extraction[J]. Sensors, 2021, 21 (6): 2153
doi: 10.3390/s21062153
|
|
|
[2] |
GUNAWAN A, ARIFIANY I, IRWANSYAH E Semantic segmentation of aerial imagery for road and building extraction with deep learning[J]. ICIC Express Letters, 2020, 14 (1): 43- 52
|
|
|
[3] |
CHENG G, WANG Y, XU S, et al Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55 (6): 3322- 3337
doi: 10.1109/TGRS.2017.2669341
|
|
|
[4] |
杨栋杰, 高贤君, 冉树浩, 等 基于多重多尺度融合注意力网络的建筑物提取[J]. 浙江大学学报: 工学版, 2022, 56 (10): 1924- 1934 YANG Dongjie, GAO Xianjun, RAN Shuhao, et al Building extraction based on multiple multiscale-feature fusion attention network[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 1924- 1934
|
|
|
[5] |
SHI W, MIAO Z, DEBAYLE J An integrated method for urban main-road centerline extraction from optical remotely sensed imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (6): 3359- 3372
doi: 10.1109/TGRS.2013.2272593
|
|
|
[6] |
王小娟, 李云伍, 刘得雄, 等 基于机器视觉的丘陵山区田间道路虚拟中线提取方法[J]. 西南大学学报:自然科学版, 2018, 40 (4): 162- 169 WANG Xiaojuan, LI Yunwu, LIU Dexiong, et al A machine vision-based method for detecting virtual midline of field roads in the hilly areas[J]. Journal of Southwest University: Natural Science, 2018, 40 (4): 162- 169
|
|
|
[7] |
CHANG D, WANG Q, YANG J, et al Research on road extraction method based on sustainable development goals Satellite-1 nighttime light data[J]. Remote Sensing, 2022, 14 (23): 6015
doi: 10.3390/rs14236015
|
|
|
[8] |
王勇, 曾祥强 集成注意力机制和扩张卷积的道路提取模型[J]. 中国图象图形学报, 2022, 27 (10): 3102- 3115 WANG Yong, ZENG Xiangqiang Road extraction model derived from integrated attention mechanism and dilated convolution[J]. Journal of Image and Graphics, 2022, 27 (10): 3102- 3115
|
|
|
[9] |
张永宏, 何静, 阚希, 等 遥感图像道路提取方法综述[J]. 计算机工程与应用, 2018, 54 (13): 1- 10 ZHANG Yonghong, HE Jing, KAN Xi, et al Summary of road extraction methods for remote sensing images[J]. Computer Engineering and Applications, 2018, 54 (13): 1- 10
|
|
|
[10] |
MNIH V, HINTON G E. Learning to detect roads in high-resolution aerial images [C]// Proceedings of European Conference on Computer Vision . Berlin: Springer, 2010: 210-223.
|
|
|
[11] |
ZHONG Z, LI J, CUI W, et al. Fully convolutional networks for building and road extraction: preliminary results [C]// Proceedings of Geoscience and Remote Sensing Symposium . Beijing: IEEE, 2016: 1591-1594.
|
|
|
[12] |
WANG F, JIANG M J, QIAN C, et al. Residual attention network for image classification [C]// IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017: 6450-6458.
|
|
|
[13] |
LI P, ZHANG Y, WANG C, et al. Road network extraction via deep learning and line integral convolution [C]// Proceedings of 2016 IEEE International Geoscience and Remote Sensing Symposium . Bejing: IEEE, 2016: 1599-1602.
|
|
|
[14] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs [EB/OL]. (2014-12-22)[2023-04-13]. https://arxiv.org/abs/1412.7062.
|
|
|
[15] |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation [R/OL]. (2017-12-05)[2023-04-13]. https://arxiv.org/abs/1706.05587.
|
|
|
[16] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40 (4): 834- 848
doi: 10.1109/TPAMI.2017.2699184
|
|
|
[17] |
CHEN L C, ZHU Y, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation [C]// Proceedings of the European Conference on Computer Vision . Cham: Springer, 2018: 801-818.
|
|
|
[18] |
CHOLLET F. Xception: deep learning with depth wiseseparable convolutions [C]// Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition . Honolulu: IEEE, 2017: 1800-1807.
|
|
|
[19] |
徐胜军, 邓博文, 史亚, 等 一种编解码结构的车牌图像超分辨率网络[J]. 西安交通大学学报, 2022, 56 (10): 101- 110 XU Shengjun, DENG Bowen, SHI Ya, et al An encoder-decoder based super resolution network for license plate images[J]. Journal of Xi'an Jiaotong University, 2022, 56 (10): 101- 110
|
|
|
[20] |
赵凌虎, 袁希平, 甘淑, 等 改进Deeplabv3 +的高分辨率遥感影像道路提取模型[J]. 自然资源遥感, 2023, 35 (1): 107- 114 ZHAO Linghu, YUAN Xiping, GAN Shu, et al Road extraction in high resolution remote sensing images based on improved Deeplabv3+model[J]. Remote Sensing for Natural Resource, 2023, 35 (1): 107- 114
|
|
|
[21] |
葛小三, 曹伟 一种改进DeepLabV3+网络的高分辨率遥感影像道路提取方法[J]. 遥感信息, 2022, 37 (1): 40- 46 GE Xiaosan, CAO Wei A road extraction method for high resolution remote sensing imagery based on improved DeepLabV3+ model[J]. Remote Sensing Information, 2022, 37 (1): 40- 46
|
|
|
[22] |
孟庆宽, 杨晓霞, 张漫, 等 基于语义分割的非结构化田间道路场景识别[J]. 农业工程学报, 2021, 37 (22): 152- 160 MENG Qingkuan, YANG Xiaoxia, ZHANG Man, et al Recognition of unstructured field road scene based on semantic segmentation mode[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37 (22): 152- 160
|
|
|
[23] |
王振, 杨珺, 邓佳莉, 等 多尺度特征自适应融合的图像语义分割算法[J]. 小型微型计算机系统, 2022, 43 (4): 834- 840 WANG Zhen, YANG Jun, DENG Jiali, et al Image semantic segmentation algorithm based on adaptive fusion of multi-scale features[J]. Journal of Chinese Computer Systems, 2022, 43 (4): 834- 840
|
|
|
[24] |
张文博, 瞿珏, 王崴, 等 融合多尺度特征的改进Deeplab v3+图像语义分割算法[J]. 电光与控制, 2022, 29 (11): 12- 16 ZANG Wenbo, QU Jue, WANG Wei, et al An improved Deeplab v3+ image semantic segmentation algorithm incorporating multi-scale features[J]. Electronics Optics and Control, 2022, 29 (11): 12- 16
|
|
|
[25] |
张小国, 丁立早, 刘亚飞, 等 基于双注意力模块的FDA-DeepLab语义分割网络[J]. 东南大学学报:自然科学版, 2022, 52 (6): 1145- 1151 ZHANG Xiaoguo, DING Lizao, LIU Yafei, et al FDA-DeepLab semantic segmentation network based on dual attention module[J]. Journal of Southeast University: Natural Science, 2022, 52 (6): 1145- 1151
|
|
|
[26] |
许泽宇, 沈占锋, 李杨, 等 增强型DeepLab算法和自适应损失函数的高分辨率遥感影像分类[J]. 遥感学报, 2022, 26 (2): 406- 415 XU Zeyu, SHEN Zhanfeng, LI Yang, et al Enhanced DeepLab algorithm and adaptive loss function for high-resolution remote sensing image classification[J]. Journal of Remote Sensing, 2022, 26 (2): 406- 415
|
|
|
[27] |
SANDLER M, HOWARD A, ZHU M, et al. MobileNetV2: inverted residuals and linear bottlenecks [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Salt Lake City: IEEE, 2018: 4510-4520.
|
|
|
[28] |
QIN Y Y, CAO J T, JI X F Fire detection method based on depthwise separable convolution and YOLOv3[J]. International Journal of Automation and Computing, 2021, 18 (2): 300- 310
doi: 10.1007/s11633-020-1269-5
|
|
|
[29] |
LIU Y C, SHAO Z R, TENG Y Y, et al. NAM: normalization-based attention module [EB/OL]. (2021-11-24)[2023-04-23]. http://arxiv.org/abs/2111.12419.
|
|
|
[30] |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]// Proceedings of the European Conference on Computer Vision . Munich: [s. n. ], 2018: 3-19.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|