|
|
Attention-fused filter bank dual-view graph convolution motor imagery EEG classification |
Shuhan WU1(),Dan WANG1,*(),Yuanfang CHEN2,Ziyu JIA3,Yueqi ZHANG1,Meng XU1 |
1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China 2. Beijing Institute of Machinery and Equipment, Beijing 100854, China 3. Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In motor imagery tasks, the brain often involves simultaneous activation of multiple regions, and traditional convolutional neural networks struggle to accurately represent the coordinated neural activity across these regions. Graph convolutional network GCN is suitable for representing the collaborative tasks of different brain regions by considering the connections and relationships between nodes (brain regions) in graph data. Attention-fused filter bank dual-view GCN(AFB-DVGCN)was proposed. A dual-branch network was constructed using filter banks to extract temporal and spatial information from different frequency bands. Information complementarity was achieved by a convolutional spatial feature extraction method for dual-view graphs. In order to improve the classification accuracy, the effective channel attention mechanism was utilized to enhance features and capture the interaction information between different feature maps. Validation results in the publicly available datasets BCI Competition IV-2a and OpenBMI show that AFB-DVGCN has achieved good classification performance, and the classification accuracy is significantly higher than that of the comparison networks.
|
Received: 20 August 2023
Published: 01 July 2024
|
|
Fund: 国家自然科学基金资助项目(12275295);中国博士后科学基金面上项目(2023M740171). |
Corresponding Authors:
Dan WANG
E-mail: wush@emails.bjut.edu.cn;wangdan@bjut.edu.cn
|
融合注意力的滤波器组双视图图卷积运动想象脑电分类
在运动想象任务中,传统卷积神经网络难以准确表达大脑多区域协同神经活动;图卷积网络(GCN)能够在图数据中考虑节点(脑区)间的连接和关系,适于表示不同脑区的协同任务,为此提出融合注意力的滤波器组双视图GCN(AFB-DVGCN). 由滤波器组构建双分支网络,提取不同频段的时域和空域信息;采用双视图图卷积空间特征提取方法实现信息互补;利用有效通道注意力机制增强特征和捕捉不同特征图的交互信息,以提高分类准确率. 在公开数据集BCI Competition IV-2a和OpenBMI上的验证结果表明,AFB-DVGCN的分类性能良好,其分类准确率显著高于对比网络的分类准确率.
关键词:
脑机接口,
运动想象,
深度学习,
图卷积网络,
注意力机制
|
|
[1] |
刘近贞, 叶方方, 熊慧 基于卷积神经网络的多类运动想象脑电信号识别[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2054- 2066 LIU Jinzhen, YE Fangfang, XIONG Hui Recognition of multi-class motor imagery EEG signals based on convolutional neural network[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (11): 2054- 2066
|
|
|
[2] |
ALTAHERI H, MUHAMMAD G, ALSULAIMAN M, et al Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: a review[J]. Neural Computing and Applications, 2023, 35: 14681- 14722
doi: 10.1007/s00521-021-06352-5
|
|
|
[3] |
ANG K K, CHIN Z Y, ZHANG H, et al. Filter bank common spatial pattern (FBCSP) in brain-computer interface [C]// 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence) . Hong Kong: IEEE, 2008: 2390–2397.
|
|
|
[4] |
SALAMI A, ANDREU-PEREZ J, GILLMEISTER H EEG-ITNet: an explainable inception temporal convolutional network for motor imagery classification[J]. IEEE Access, 2022, 10: 36672- 36685
doi: 10.1109/ACCESS.2022.3161489
|
|
|
[5] |
SCHIRRMEISTER R T, SPRINGENBERG J T, FIEDERER L D J, et al Deep learning with convolutional neural networks for EEG decoding and visualization[J]. Human Brain Mapping, 2017, 38 (11): 5391- 5420
doi: 10.1002/hbm.23730
|
|
|
[6] |
LAWHERN V J, SOLON A J, WAYTOWICH N R, et al EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces[J]. Journal of Neural Engineering, 2018, 15 (5): 056013
doi: 10.1088/1741-2552/aace8c
|
|
|
[7] |
JIA Z, LIN Y, WANG J, et al. GraphSleepNet: adaptive spatial-temporal graph convolutional networks for sleep stage classification [C]// Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence . [S. l.]: ACM, 2020: 1324–1330.
|
|
|
[8] |
李珍琦, 王晶, 贾子钰, 等 融合注意力的多维特征图卷积运动想象分类[J]. 计算机科学与探索, 2022, 16 (9): 2050- 2060 LI Zhenqi, WANG Jing, JIA Ziyu, et al Attention-based multi-dimensional feature graph convolutional network for motor imagery classification[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16 (9): 2050- 2060
doi: 10.3778/j.issn.1673-9418.2103079
|
|
|
[9] |
WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 11534–11542.
|
|
|
[10] |
徐冰冰, 岑科廷, 黄俊杰, 等 图卷积神经网络综述[J]. 计算机学报, 2020, 43 (5): 755- 780 TU Bingbing, CEN Keting, HUANG Junjie, et al A survey on graph convolutional neural network[J]. Chinese Journal of Computers, 2020, 43 (5): 755- 780
doi: 10.11897/SP.J.1016.2020.00755
|
|
|
[11] |
ZHANG D, CHEN K, JIAN D, et al Motor imagery classification via temporal attention cues of graph embedded EEG signals[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24 (9): 2570- 2579
doi: 10.1109/JBHI.2020.2967128
|
|
|
[12] |
SUN B, ZHANG H, WU Z, et al Adaptive spatiotemporal graph convolutional networks for motor imagery classification[J]. IEEE Signal Processing Letters, 2021, 28: 219- 223
doi: 10.1109/LSP.2021.3049683
|
|
|
[13] |
HOU Y, JIA S, LUN X, et al Deep feature mining via the attention-based bidirectional long short term memory graph convolutional neural network for human motor imagery recognition[J]. Frontiers in Bioengineering and Biotechnology, 2022, 9: 706229
doi: 10.3389/fbioe.2021.706229
|
|
|
[14] |
HOU Y, JIA S, LUN X, et al. GCNs-Net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals [J]. IEEE Transactions on Neural Networks and Learning Systems , 2022: 1–12.
|
|
|
[15] |
MA W, WANG C, SUN X, et al MBGA-Net: a multi-branch graph adaptive network for individualized motor imagery EEG classification[J]. Computer Methods and Programs in Biomedicine, 2023, 240: 107641
doi: 10.1016/j.cmpb.2023.107641
|
|
|
[16] |
BAHDANAU D, CHO K H, BENGIO Y. Neural machine translation by jointly learning to align and translate [C]// 3rd International Conference on Learning Representations 2015 . San Diego: [s. n.], 2015.
|
|
|
[17] |
LI D, XU J, WANG J, et al A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2020, 28 (12): 2615- 2626
doi: 10.1109/TNSRE.2020.3037326
|
|
|
[18] |
LI Y, GUO L, LIU Y, et al A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29: 1534- 1545
doi: 10.1109/TNSRE.2021.3099908
|
|
|
[19] |
YU Z, CHEN W, ZHANG T Motor imagery EEG classification algorithm based on improved lightweight feature fusion network[J]. Biomedical Signal Processing and Control, 2022, 75: 103618
doi: 10.1016/j.bspc.2022.103618
|
|
|
[20] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering [C]// Proceedings of the 30th Information Processing Systems . Barcelona: [s. n.], 2016: 3844–3852.
|
|
|
[21] |
TANGERMANN M, MÜLLER K R, AERTSEN A, et al Review of the BCI competition IV[J]. Frontiers in Neuroscience, 2012, 6: 55
|
|
|
[22] |
LEE M H, KWON O Y, KIM Y J, et al EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy[J]. GigaScience, 2019, 8 (5): giz002
doi: 10.1093/gigascience/giz002
|
|
|
[23] |
LIU K, YANG M, YU Z, et al FBMSNet: a filter-bank multi-scale convolutional neural network for EEG-based motor imagery decoding[J]. IEEE Transactions on Biomedical Engineering, 2022, 70 (2): 436- 445
|
|
|
[24] |
KINGMA D P, BA J. Adam: a method for stochastic optimization [EB/OL]. (2017-01-30)[2023-08-20]. https://arxiv.org/pdf/1412.6980.pdf.
|
|
|
[25] |
WU H, NIU Y, LI F, et al A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification[J]. Frontiers in Neuroscience, 2019, 13: 1275
doi: 10.3389/fnins.2019.01275
|
|
|
[26] |
MANE R, ROBINSON N, VINOD A P, et al. A multi-view CNN with novel variance layer for motor imagery brain computer interface [C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Montreal: IEEE, 2020.
|
|
|
[27] |
BORRA D, FANTOZZI S, MAGOSSO E Interpretable and lightweight convolutional neural network for EEG decoding: application to movement execution and imagination[J]. Neural Networks, 2020, 129: 55- 74
doi: 10.1016/j.neunet.2020.05.032
|
|
|
[28] |
CHEN J, YI W, WANG D. Filter bank Sinc-ShallowNet with EMD-based mixed noise adding data augmentation for motor imagery classification [C]// 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) . Mexico: IEEE, 2021: 5837–5841.
|
|
|
[29] |
VAN DER MAATEN L, HINTON G Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579- 2605
|
|
|
[30] |
MISRA D, NALAMADA T, ARASANIPALAI A U, et al. Rotate to attend: convolutional triplet attention module [C]// Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision . Waikoloa: IEEE, 2021: 3139–3148.
|
|
|
[31] |
LIU Y, SHAO Z, TENG Y, et al. NAM: normalization-based attention module [EB/OL]. (2021-11-24)[2023-08-20]. https://arxiv.org/pdf/2111.12419.pdf.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|