Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (12): 2489-2500    DOI: 10.3785/j.issn.1008-973X.2023.12.016
    
Tensile behavior of one-side bolted T-stub to tube connection at fire and post-fire circumstances
Yang YOU1(),Pei-jun WANG2,*(),Le-le SUN3,Ji-hong YE4,Jian JIANG4
1. School of Transportation and Civil Engineering, Shandong Jiaotong University, Jinan 250357, China
2. School of Civil Engineering, Shandong University, Jinan 250061, China
3. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
4. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
Download: HTML     PDF(4001KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The tensile behavior of the thread-fixed one-side bolted T-stub to tube connection under fire and post-fire circumstances was studied. Fire tests were conducted using both transient-state and steady-state methods, and a comparison was made with standard high-strength bolted connections. The post-fire test analyzed the influence of temperature and applied load on the residual behavior of the connection. The results revealed four typical failure modes of the connection, all the four modes remained unchanged in both fire and post-fire scenarios. The connection exhibited a rapid decrease in tensile performance at high temperatures. No thread failure on the steel tube column wall occurred before yielding in the connection. In the post-fire test, the residual load-bearing capacity of the connections was basically the same as at room temperature, indicating that the connections still possess good load-bearing capacity after a fire. The performance of the one-side bolts in connections with end-plate yielding accompanied by bolt failure is similar to that of standard bolts. Based on the test results, a method for calculating the load-bearing capacity of one-side bolted connections at high temperatures was proposed, and the calculated results matched well with the test results.



Key wordsthread-fixed      one-side bolt      fire temperature after fire      load-bearing capacity      design method     
Received: 01 June 2023      Published: 27 December 2023
CLC:  TU 391  
Fund:  国家自然科学基金资助项目(52078280, 52127814);山东省自然科学基金资助项目(ZR2023QE324)
Corresponding Authors: Pei-jun WANG     E-mail: 574948117@qq.com;pjwang@sdu.edu.cn
Cite this article:

Yang YOU,Pei-jun WANG,Le-le SUN,Ji-hong YE,Jian JIANG. Tensile behavior of one-side bolted T-stub to tube connection at fire and post-fire circumstances. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2489-2500.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.12.016     OR     https://www.zjujournals.com/eng/Y2023/V57/I12/2489


单边螺栓连接T形件-钢管节点高温下及高温后受拉性能

通过试验,研究螺纹锚固单边螺栓连接节点在高温下及高温后的受拉性能,并与标准高强螺栓连接节点进行比较. 在高温试验中,采用恒温加载和恒载升温2种方式,研究不同温度及荷载比对节点破坏模式及承载力的影响;在高温后试验中,研究火灾阶段的温度及荷载对节点破坏模式和承载力的影响. 试验结果表明,单边螺栓连接T形件-钢管节点存在4种典型破坏模式,且高温下和高温后节点的破坏模式均不会发生改变. 随着温度升高,节点承载性能下降明显,但试验节点在屈服前均未出现钢管柱壁上的螺纹破坏. 在高温后试验中,节点的残余承载力与常温下基本相同,表明节点在火灾后仍具有良好的承载力. 节点发生端板屈服伴随螺栓破坏时的单边螺栓性能与标准螺栓相近. 根据试验结果,提出单边螺栓节点高温下的承载力计算方法,所提公式的计算结果与试验结果吻合较好.


关键词: 螺纹锚固,  单边螺栓,  火灾温度高温后,  受力性能,  设计方法 
Fig.1 Test specimens and test set-up
试件 dtw/mm dep/mm D/mm 螺栓类型
S1 6 12 16 OB
S2 12 12 16 OB
S3 12 6 16 OB
S4 12 12 10 OB
S5 6 12 16 SB
S6 12 12 16 SB
Tab.1 Grouping and parameters of test specimens
Fig.2 Electronic furnace and testing machine
Fig.3 Temperature increasing speed in test
Fig.4 Failure mode of specimens in S1 group
Fig.5 Failure mode of specimens in S2 group
Fig.6 Failure mode of specimens in S3 group
Fig.7 Failure mode of specimens in S4 group
Fig.8 Load-displacement curves in different tests
试件 θ/℃ FY/kN FU/kN 破坏模式
S1 20 28.1 41.9 钢管屈服破坏
S2 20 118.8 173.4 端板屈服伴随螺栓破坏
S3 20 47.7 70.4 端板屈服破坏
S4 20 74.1 93.0 螺栓拉断
S5 20 29.1 52.1 钢管屈服破坏
S6 20 120.2 186.2 端板屈服伴随螺栓破坏
Tab.2 Test result of specimens at ambient temperature
试件 θ/℃ FY/kN FU/kN 破坏模式
S1 500 17.2 27.2 钢管屈服破坏
S1 700 5.5 7.5 钢管屈服破坏
S2 500 68.5 113.2 端板屈服伴随螺栓破坏
S2 700 17.5 25.9 端板屈服伴随螺栓破坏
S3 500 23.1 38.7 端板屈服破坏
S3 700 8.0 14.6 端板屈服破坏
S4 500 43.2 53.7 螺栓拉断
S4 700 9.3 11.3 螺栓拉断
S5 500 18.7 36.1 钢管屈服破坏
S5 700 5.7 8.7 钢管屈服破坏
S6 500 68.6 110.6 端板屈服伴随螺栓破坏
S6 700 18.5 27.2 端板屈服伴随螺栓破坏
Tab.3 Steady-state test result of specimens
Fig.9 Load-displacement curves of specimens in S1 group
Fig.10 Load-displacement curves of specimens in S2 group
Fig.11 Load-displacement curves of specimens in S3 group
Fig.12 Load-displacement curves of specimens in S4 group
试件 μ Fμ/kN 破坏模式 θF /℃ Δ/mm
S1 0.50 14.1 钢管屈服破坏 614.8 10.5
S1 0.75 21.1 钢管屈服破坏 552.7 6.8
S2 0.50 59.4 端板屈服伴随螺栓破坏 639.7 22.3
S2 0.75 89.1 端板屈服伴随螺栓破坏 573.5 18.6
S3 0.50 23.9 端板屈服破坏 654.0 29.9
S3 0.75 35.8 端板屈服破坏 578.9 27.1
S4 0.50 37.1 螺栓拉断 572.1 10.3
S4 0.75 55.6 螺栓拉断 500.5 7.5
S5 0.50 14.6 钢管屈服破坏 673.3 92.0
S5 0.75 21.8 钢管屈服破坏 605.1 83.0
S6 0.50 60.1 端板屈服伴随螺栓破坏 569.1 21.2
S6 0.75 90.2 端板屈服伴随螺栓破坏 502.3 19.0
Tab.4 Transient-state test result of specimens
试件编号 θ/℃ μ Fμ/kN 破坏阶段 破坏模式 FY,R/kN FY,R/FY FU,R/kN FU,R/FU
S1 500 0.25 7.1 阶段3 钢管屈服破坏 27.0 0.96 39.7 0.95
S1 500 0.50 14.1 阶段3 钢管屈服破坏 26.8 0.95 38.8 0.93
S1 700 0.25 7.1 阶段2 钢管屈服破坏
S2 500 0.25 29.7 阶段3 端板屈服伴随螺栓破坏 107.6 0.91 164.9 0.95
S2 500 0.50 59.4 阶段3 端板屈服伴随螺栓破坏 104.3 0.88 153.7 0.89
S2 700 0.25 29.7 阶段2 端板屈服伴随螺栓破坏
S3 500 0.25 12.0 阶段3 端板屈服破坏 44.1 0.92 62.1 0.88
S3 500 0.50 23.9 阶段3 端板屈服破坏 43.4 0.91 61.9 0.88
S3 700 0.25 12.0 阶段3 端板屈服破坏 43.1 0.91 62.7 0.89
S4 500 0.25 18.6 阶段3 螺栓拉断 70.2 0.95 91.1 0.98
S4 500 0.50 37.1 阶段3 螺栓拉断 69.3 0.94 89.7 0.96
S4 700 0.25 18.6 阶段2 螺栓拉断
S5 500 0.25 7.3 阶段3 钢管屈服破坏 27.1 0.93 48.8 0.94
S5 500 0.50 14.6 阶段3 钢管屈服破坏 26.8 0.92 48.7 0.93
S5 700 0.25 7.3 阶段3 钢管屈服破坏 26.3 0.90 48.8 0.94
S6 500 0.25 30.1 阶段3 端板屈服伴随螺栓破坏 114.3 0.95 180.4 0.97
S6 500 0.50 60.1 阶段3 端板屈服伴随螺栓破坏 113.2 0.94 174.7 0.94
S6 700 0.25 30.1 阶段3 端板屈服伴随螺栓破坏
Tab.5 Post-fire test result of specimens
Fig.13 Failure mode of specimens in S5 group
Fig.14 Comparison of load-displacement curves of specimens in S1 and S5 groups
Fig.15 Failure mode of specimens in S6 group
Fig.16 Comparison of load-displacement curves of specimens in S2 and S6 groups
Fig.17 Analytical model of yielding of column wall
Fig.18 Simplified calculation model considering large deformations of support
Fig.19 Analytical model of column wall yielding with bolt failure
Fig.20 Analytical model of yielding of end-plate
材料 θ/℃ fy/MPa fu/MPa E/GPa
6 mm钢板 20 338.6 468.0 204
6 mm钢板 500 210.1 313.6 140
6 mm钢板 700 67.2 73.1 28
12 mm钢板 20 314.0 460.0 204
12 mm钢板 500 206.5 308.2 140
12 mm钢板 700 59.9 68.1 28
螺栓 20 692.9 911.7 210
螺栓 500 372.3 489.8 113
螺栓 700 90.4 118.9 31
Tab.6 Material properties of steel plates of different thickness and bolts
试件 θ/℃ 试验结果 计算结果 (FE·FY?1)/%
FY/kN 破坏
模式
FE/kN 破坏
模式
S1 20 28.1 1 27.2 1 96.8
S1 500 17.2 1 16.9 1 98.3
S1 700 5.5 1 5.4 1 98.2
S2 20 118.8 2 125.4 2 105.6
S2 500 68.5 2 72.7 2 106.1
S2 700 17.5 2 18.9 2 108.0
S3 20 47.7 3 42.8 3 89.7
S3 500 23.1 3 25.1 3 108.7
S3 700 8.0 3 8.3 3 103.8
S4 20 74.1 4 74.2 4 100.1
S4 500 43.2 4 41.2 4 95.4
S4 700 9.3 4 10.0 4 107.5
Tab.7 Comparison of calculated result given by proposed equations and test results
[1]   王志宇, 王清远, 刘晓凯, 等 基于屈服线理论的螺栓端板连接方钢管柱承载力计算模型研究[J]. 建筑结构学报, 2016, 37 (6): 160- 173
WANG Zhi-yu, WANG Qing-yuan, LIU Xiao-kai, et al Yield line theory based loading capacity analytical model of bolted endplate connections to square hollow section columns[J]. Journal of Building Structures, 2016, 37 (6): 160- 173
[2]   王静峰, 仲力平, 郭磊, 等 方套方中空夹层钢管混凝土柱单边螺栓连接节点拟动力试验分析[J]. 土木工程学报, 2019, 52 (9): 1- 11
WANG Jing-feng, ZHONG Li-ping, GUO Lei, et al Pseudo-dynamic test analysis on blind joints between square CFDST columns and steel beams[J]. China Civil Engineering Journal, 2019, 52 (9): 1- 11
[3]   蒋蕴涵, 李国强, 陈琛, 等 自锁式单向螺栓在拉剪共同作用下的承载力研究[J]. 土木工程学报, 2022, 55 (4): 23- 32
JIANG Yun-han, LI Guo-qiang, CHEN Chen, et al Study on bearing capacity of self-lock blind bolt subjected to combined tension and shear[J]. China Civil Engineering Journal, 2022, 55 (4): 23- 32
[4]   LEE J, GOLDSWORTHY H M, GAD E F Blind bolted T-stub connections to unfilled hollow section columns in low rise structures[J]. Journal of Constructional Steel Research, 2010, 66 (8/9): 981- 992
[5]   WAN C, BAI Y, DING C, et al Mechanical performance of novel steel one-sided bolted joints in shear[J]. Journal of Constructional Steel Research, 2020, 165: 105815
doi: 10.1016/j.jcsr.2019.105815
[6]   LI Y L, ZHAO X L Experimental study on stainless steel blind bolted T-stub to square hollow section connections[J]. Thin-Walled Structures, 2021, 167: 108259
doi: 10.1016/j.tws.2021.108259
[7]   中华人民共和国住房和城乡建设部. 钢网架螺栓球节点: JG/T 10—2009 [S]. 北京: 中国建筑工业出版社, 2009.
[8]   乌兰托亚. 螺纹锚固单边螺栓连接节点破坏机理和设计对策研究[D]. 济南: 山东大学, 2021.
WULAN Tuo-ya. Study on the failure mechanisms and design methods of the thread-fixed one-side bolted connection [D]. Jinan: Shandong University, 2021.
[9]   何明胜, 刘礼, 王京, 等 新型全螺栓连接钢框架抗震性能试验研究[J]. 建筑钢结构进展, 2020, 22 (1): 19- 25
HE Ming-sheng, LIU Li, WANG Jing, et al Experimental study on sesmic behavior of new type fully-bolted connection for steel frame[J]. Progress in Steel Building Structures, 2020, 22 (1): 19- 25
[10]   杨放, 付宜东, 黄炳生, 等 高温下螺栓球节点受拉性能试验研究[J]. 建筑结构学报, 2016, 37 (11): 55- 60
YANG Fang, FU Yi-dong, HUANG Bing-sheng, et al Experimental study on tension behavior of bolt-sphere joints in high temperature[J]. Journal of Building Structures, 2016, 37 (11): 55- 60
[11]   冯绍攀, 幸坤涛, 王新泉, 等 钢网架螺栓球节点用高强度螺栓过火冷却后力学性能试验研究[J]. 建筑结构学报, 2021, 42 (2): 198- 205
Feng Shao-pan, Xing Kun-tao, WANG Xin-quan, et al Experimental study on mechanical properties of high strength bolts used in steel grid bolted spherical joints after fire[J]. Journal of Building Structures, 2021, 42 (2): 198- 205
[12]   WANG P, YOU Y, XU Q, et al Shear behavior of lapped connections bolted by thread-fixed one-side bolts at elevated temperatures[J]. Fire Safety Journal, 2021, 125: 103415
doi: 10.1016/j.firesaf.2021.103415
[13]   陈颖智, 童乐为, 陈以一 组件法用于钢结构节点性能分析的研究进展[J]. 建筑科学与工程学报, 2012, 29 (3): 81- 89
CHEN Ying-zhi, TONG Le-wei, CHEN Yi-yi Research developments of component method for behavior of joints in steel structures[J]. Journal of Architecture and Civil Engineering, 2012, 29 (3): 81- 89
doi: 10.3969/j.issn.1673-2049.2012.03.013
[14]   全国螺纹标准化技术委员会. 普通螺纹 基本尺寸: GB/T 196—2003 [S]. 北京: 中国标准出版社, 2003.
[15]   全国紧固件标准化技术委员会. 钢结构用高强度大六角头螺栓: GB/T 1228—2006 [S]. 北京: 中国标准出版社, 2006.
[16]   中华人民共和国住房和城乡建设部. 钢结构设计标准: GB 50017—2017 [S]. 北京: 中国建筑工业出版社, 2017.
[17]   中国钢铁工业协会. 金属材料 拉伸试验 第1部分: 室温拉伸试验方法: GB/T 228.1—2021 [S]. 北京: 中国标准出版社, 2021.
[18]   冯鹏, 强翰霖, 叶列平 材料、构件、结构的“屈服点”定义与讨论[J]. 工程力学, 2017, 34 (3): 36- 46
FENG Peng, QIANG Han-lin, YE Lie-ping Discussion and definition on yield points of materials, members and structures[J]. Engineering Mechanics, 2017, 34 (3): 36- 46
[1] Lei DING,Gen-shu TONG,Lei ZHANG. Shear behavior of exposed steel column base joint[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 73-82.
[2] LIU Yi-xiang, TONG Gen-shu, ZHANG Lei. Fire resistance and load-bearing capacity of concrete filled fire-resistant steel tubular columns with circular cross-section[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 208-217.
[3] HUANG Fang, YU Zi-tao, SHUAI Ou, HU Ya-cai, XIE Ning. Carbon nanotube nanofluid's stability with uniform design method[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(7): 1254-1258.
[4] WU Hui,CEN Di-Qin,GAO Bo-qing. Approximate optimization and performance analysis of
rigid cable dome structure
[J]. Journal of ZheJiang University (Engineering Science), 2011, 45(11): 1966-1971.