|
|
Foundation settlement-induced bending analysis of composite structures in water-conveying shield tunnels |
Zhe-jian ZHOU1( ),Yi-xiong FAN2,Ran FANG2,Xue-cheng BIAN1,*( ) |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. Central and Southern China Municipal Engineering Design and Research Institute Limited Company, Wuhan 430010, China |
|
|
Abstract Combining the elastic-plastic deformation characteristics of concrete, bolts, and steel tube, a model for bending analysis of tunnel lining segments, water-conveying steel tube, and concrete filled in between tunnel lining segments and water-conveying steel tube was established based on the longitudinal equivalent continuous model and the plane cross-section assumption. The key parameters for the shield tunnel under the influence of ground settlement were obtained by solving the model. These parameters include the longitudinal joint opening of shield tunnels, the maximum concrete compressive strain, and the maximum steel tube tensile strain. The established model was applied to a water-conveying shield tunnel project in Hangzhou. The results indicate that ground settlement causes the tunnel to bend, leading to seven critical states in the tunnel structure. The sequence of these critical states is as follows: bolts reach yield stress, 2 mm opening of circumferential joints (bolts and segment concrete are eroded), steel tube reaches yield stress, 6 mm opening of circumferential joints (filled concrete-steel tube is eroded), segment concrete begins to experience compressive yield, filled concrete begins to experience compressive yield, and bolts reach failure stress. When the steel tube is in close contact with the lining wall, the tunnel structure is in the most unfavorable condition, which can lead to steel tube corrosion and tunnel brittle failure.
|
Received: 08 February 2023
Published: 27 December 2023
|
|
Fund: 国家杰出青年基金资助项目(52125803);中央高校基本科研业务费专项资金资助项目(226-2022-00196) |
Corresponding Authors:
Xue-cheng BIAN
E-mail: 976008595@qq.com;bianxc@zju.edu.cn
|
地基沉降引发输水盾构隧道复合结构受弯分析
结合混凝土、螺栓和钢管的弹塑性变形特性,基于纵向等效连续模型和平截面假定,建立衬砌管片、输水钢管及在衬砌管片与输水钢管之间填充混凝土的受弯分析模型. 求解该模型,得到地基沉降作用下盾构隧道纵向接缝张开量、最大混凝土压应变及最大钢管拉应变等关键参数. 将所建模型应用于杭州某输水盾构隧道工程,结果表明:地基沉降引起隧道受弯,隧道结构将产生7类临界状态,且先后顺序为螺栓达到屈服应力、环缝张开2 mm (螺栓和管片混凝土被侵蚀)、钢管达到屈服应力、环缝张开6 mm(钢管和填充混凝土被侵蚀)、管片混凝土开始受压屈服、填充混凝土开始受压屈服、螺栓达到破坏应力. 当钢管紧贴衬砌管壁时,隧道结构处于最不利工况,容易导致钢管腐蚀和隧道脆性破坏.
关键词:
输水盾构隧道,
复合结构,
受弯分析模型,
受弯性能,
设计优化
|
|
[1] |
SHEN S L, WU H N, CUI Y J, et al Long−term settlement behaviour of metro tunnels in the soft deposits of shanghai[J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2014, 40 (2): 309- 323
|
|
|
[2] |
DI H, ZHOU S, GUO P, et al Observed long−term differential settlement of metro structures built on soft deposits in the Yangtze River Delta region of China[J]. Canadian Geotechnical Journal, 2020, 57 (6): 840- 850
doi: 10.1139/cgj-2018-0524
|
|
|
[3] |
小泉淳, 村上博智, 西野健三. ツールドトネルの轴方向特性のモデルイヒにつぃて [C]// 土木学会论文集. 东京: 土木学会, 1988: 79−88. KOIZUMI A, MURAKAMI H, NISHINO K. Study on the analytical model of shield tunnel in longitudinal direction [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 79−88.
|
|
|
[4] |
志波由纪夫, 川島一彦, 大日方尚己, 等. ツールドトンネルの耐震解析に用いる長手方向覆工剛性の評価法 [C]// 土木学会论文集. 东京: 土木学会, 1988: 319−327. SHIBA Y, KAWASHIMA K, OBINATA N, et al. An evaluation method of longitudinal stiffness of shield tunnel linings for application to seismic response analyses [C]// Journal of the Japan Society of Civil Engineers. Tokyo: Japan Society of Civil Engineers, 1988: 319−327.
|
|
|
[5] |
徐 凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005. XU Ling. Study on longitudinal settlement of soft soil shield tunnel [D]. Shanghai: Tongji University, 2005.
|
|
|
[6] |
李翔宇, 刘国彬, 杨 潇, 等 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36 (4): 662- 670 LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 662- 670
|
|
|
[7] |
LI X, ZHUO X, HOMG B, et al Experimental and analytical study on longitudinal bending behavior of shield tunnel subjected to longitudinal axial forces[J]. Tunnelling and Underground Space Technology, 2019, 86: 128- 137
doi: 10.1016/j.tust.2019.01.011
|
|
|
[8] |
CHENG H Z, CHEN R P, WU H N General solutions for the longitudinal deformation of shield tunnels with multiple discontinuities in strata[J]. Tunnelling and Underground Space Technology, 2021, 107: 103652
doi: 10.1016/j.tust.2020.103652
|
|
|
[9] |
WANG Z, SHI C, GONG C, et al An enhanced analytical model for predicting the nonlinear longitudinal equivalent bending stiffness of shield tunnels incorporating combined N−M actions[J]. Tunnelling and Underground Space Technology, 2022, 126: 104567
doi: 10.1016/j.tust.2022.104567
|
|
|
[10] |
梁荣柱, 王凯超, 黄亮, 等 类矩形盾构隧道纵向等效抗弯刚度解析解[J]. 岩土工程学报, 2022, 44 (2): 212- 223 LIANG Rong-zhu, WANG Kai-chao, HUANG Liang, et al Analytical solution of longitudinal equivalent flexural stiffness of quasi rectangular shield tunnel[J]. Chinese Journal of Geotechnical Engineering, 2022, 44 (2): 212- 223
|
|
|
[11] |
ASSOCIATION W, Guidelines for the design of shield tunnel lining [J]. Tunnelling and Underground Space technology, 2000, 15(3): 303−331.
|
|
|
[12] |
中华人民共和国住房和城乡建设部. 地铁设计规范: GB 50157—2013 [S]. 北京: 中国建筑工业出版社, 2013.
|
|
|
[13] |
HOGNESTAD E Inelastic behavior in tests of eccentrically loaded short reinforced concrete columns[J]. American Concrete Institute Journal Proceedings, 1952, 49 (10): 117- 139
|
|
|
[14] |
American Concrete Institute. Building code requirements for structural concrete and commentary: ACI 318−11 [S]. Farmington Hills: ACI, 2011.
|
|
|
[15] |
PARK R, PAULAY T. Reinforced concrete structures [M]. New York: John Wiley and Sons, 1975.
|
|
|
[16] |
TENG J G, HU Y M Behaviour of FRP−jacketed circular steel tubes and cylindrical shells under axial compression[J]. Construction and Building Materials, 2007, 21 (4): 827- 838
doi: 10.1016/j.conbuildmat.2006.06.016
|
|
|
[17] |
潘友光, 钟善桐 钢管混凝土轴心受拉本构关系[J]. 工业建筑, 1990, (4): 30- 37 PAN You-guang, ZHONG Shan-tong The axis tensile constitutive relationship of concrete filled steel tubes[J]. Industrial Construction, 1990, (4): 30- 37
doi: 10.13204/j.gyjz1990.04.007
|
|
|
[18] |
郑永来, 韩文星, 童琪华, 等 软土地铁隧道纵向不均匀沉降导致的管片接头环缝开裂研究[J]. 岩石力学与工程学报, 2005, 24 (24): 4552- 4558 ZHENG Yong-lai, HAN Wen-xing, TONG Qi-hua, et al Study on longitudinal crack of shield tunnel segment joint due to asymmetric settlement in soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24 (24): 4552- 4558
|
|
|
[19] |
鲁志鹏. 基于静态量测数据的盾构法地铁隧道建设和运营安全评价研究[D]. 上海: 同济大学, 2008. LU Zhi-peng. Study on the safety evaluation of tunnel construction and operation based on static measurement data [D]. Shanghai: Tongji University, 2008.
|
|
|
[20] |
张迪, 陈睿杰, 廖少明 盾构隧道双层衬砌结构纵向等效弯曲刚度研究——以上海吴淞口长江隧道工程为例[J]. 隧道建设, 2021, 41 (Suppl.1): 28- 35 ZHANG Di, CHEN Rui-jie, LIAO Shao-ming Study of longitudinal equivalent bending stiffness of double−layered lining of shield tunnel: a case study of Wusongkou Yangtze River-crossing tunnel in Shanghai[J]. Tunnel Construction, 2021, 41 (Suppl.1): 28- 35
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|