|
|
Hydrostatic and hydrodynamic characteristic analysis of three-wedge gas bearing |
Chenxin ZHANG( ),Weirong HONG*( ),Shuiying ZHENG |
Institute of Process Equipment, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract A three-wedge gas bearing, with both hydrostatic and hydrodynamic pressure characteristics, was specially designed for the bearing-rotor system of the air compressor in hydrogen fuel cell vehicle. The mechanism of hydrostatic and hydrodynamic coupling effect, the flow field characteristics, and the dynamic and static parameters of the bearing were investigated. These results were also compared with those of traditional cylindrical gas bearings. To analyze the flow field characteristics of the bearing, a dynamic mesh program was developed using UDF in Fluent software, and a related CFD transient simulation method was proposed to solve the nonlinear gas film forces and the dynamic parameters of the bearing at any eccentric journal position. The analysis showed that the hydrodynamic and hydrostatic pressure effect intensity of the three-wedge bearing varied with the external working condition, but kept on coupling with each other, ensuring that the bearing always provided effective and stable support for the rotor. At low rotational speed, the hydrostatic pressure effect was the main factor affecting bearing performance, and the three-wedge gas bearing exhibited similar working performance to cylindrical bearing. The three-wedge gas bearing can thus provide stable support for on-board compressor rotor during start-stop and acceleration. With the increase of the rotational speed, the hydrodynamic pressure effect of the three-wedge gas bearing was significantly enhanced. The three-wedge gas bearing can thus provide support for high-speed compressors with lower gas supply pressure than the cylindrical bearing. Therefore, compared with the traditional cylindrical gas bearing that required external gas sources, the three-wedge gas bearing can provide a stable support for the rotor only using the internal gas circuit of the hydrogen fuel cell vehicle. It adapted well with the working environment inside the hydrogen fuel cell vehicle where the gas supply pressure was limited, and the rotor underwent frequent start-stop and speed changes.
|
Received: 12 July 2023
Published: 30 August 2024
|
|
Corresponding Authors:
Weirong HONG
E-mail: chenxin_zhang@126.com;hongwr@zju.edu.cn
|
三楔气体轴承的动静压特性分析
针对氢燃料电池汽车车载空压机的轴承-转子系统,提出兼具静压和动压特性的三楔式气体轴承. 开展轴承动静压耦合作用机制和流场特性、动静态参数研究,并与传统的圆柱气体轴承进行对比. 为了计算轴承的流场特性,在Fluent软件的用户自定义函数(UDF)中编写动网格程序,并提出相应的计算流体力学 (CFD)瞬态模拟方法来求解轴颈任意偏心位置时的轴承非线性气膜力与动态参数. 研究表明,在运行工况变化时,三楔气体轴承动静压效应的强度会不断变化,但始终能通过耦合效应为转子提供有效、稳定的支承. 在低转速范围内,静压效应是影响三楔气体轴承性能的主要因素,表现出与圆柱气体轴承相似的支承效果,保证车载压缩机在启停或升速过程中的稳定运转. 当转速增大时,三楔气体轴承的动压效应显著增强,能在更低的供气压力下为高速旋转的车载压缩机提供支承. 相较于需要外接气源的圆柱气体轴承,三楔气体轴承能在仅利用氢燃料电池汽车供气系统内部气路的情况下为转子提供稳定的支承,适应车载空压机中气体压力有限且须频繁启停、变速的工作环境.
关键词:
气体轴承,
动静压耦合,
动压效应,
轴承特性,
氢燃料电池汽车
|
|
[1] |
付佩, 周紫佳, 兰利波, 等 氢燃料电池汽车发动机关键技术研究现状及趋势展望[J]. 汽车工程学报, 2022, 12 (4): 11 FU Pei, ZHOU Zijia, LAN Libo, et al Research and development trends of key technologies of hydrogen fuel cell engines[J]. Chinese Journal of Automotive Engineering, 2022, 12 (4): 11
doi: 10.3969/j.issn.2095-1469.2022.04.05
|
|
|
[2] |
任天明. 高速水润滑轴承电动离心式空压机关键技术研究[D]. 北京: 北京科技大学, 2017. REN Tianming. Study on the high speed motorized centrifugal air compressor with water lubricated journal bearings [D]. Beijing: University of Science and Technology Beijing, 2017.
|
|
|
[3] |
徐文章. 双螺杆空压机的水润滑动静压轴承-转子动力学分析[D]. 南京: 东南大学, 2019. XU Wenzhang. Dynamic analysis of the water-lubricated hybrid bearing-rotor system of twin-screw air compressor [D]. Nanjing: Southeast University, 2019.
|
|
|
[4] |
王智洋, 张庆源. 一种基于磁悬浮轴承的车载燃料电池气体压缩机: CN110886706A[P]. 2021−03−19.
|
|
|
[5] |
WAN Y, GUAN J, XU S Improved empirical parameters design method for centrifugal compressor in PEM fuel cell vehicle application[J]. International Journal of Hydrogen Energy, 2016, 42 (8): 5590- 5605
|
|
|
[6] |
DAEJONG K Foil bearing technology for high speed single stage air compressors for fuel cell applications[J]. Chinese Journal of Turbomachinery, 2021, 63 (4): 54- 59
|
|
|
[7] |
ZHANG H, YU W, HUA W Design and key technology of oil-free centrifugal air compressor for hydrogen fuel cell[J]. China Electrotechnical Society Transactions on Electrical Machines and Systems, 2022, 6 (1): 11- 19
doi: 10.30941/CESTEMS.2022.00003
|
|
|
[8] |
张雯, 董泽达, 徐方程 氢燃料电池空压机动压箔片轴承设计与试验[J]. 兵器装备工程学报, 2022, 43 (4): 172- 178 ZHANG Wen, DONG Zeda, XU Fangcheng Design and test of aerodynamic foil bearings for hydrogen fuel cell air compressors[J]. Journal of Ordnance Equipment Engineering, 2022, 43 (4): 172- 178
doi: 10.11809/bqzbgcxb2022.04.028
|
|
|
[9] |
冯凯, 黄明, 李成勤, 等 径向气体箔片轴承高速重载测试及实验台搭建[J]. 湖南大学学报: 自然科学版, 2020, 47 (2): 1- 5 FENG Kai, HUANG Ming, LI Chengqin, et al Test of high speed and heavy load gas foil bearing and set up of test rig[J]. Journal of Hunan University: Natural Sciences, 2020, 47 (2): 1- 5
|
|
|
[10] |
王伟, 李晓疆, 曾强, 等 高速透平机械全金属鼓泡箔片动压气体轴承稳定性研究[J]. 西安交通大学学报, 2017, 51 (8): 84- 89 WANG Wei, LI Xiaojiang, ZENG Qiang, et al Stability analysis for fully hydrodynamic gas-lubricated protuberant foil bearings in high speed turbomachinery[J]. Journal of Xi'an Jiaotong University, 2017, 51 (8): 84- 89
|
|
|
[11] |
靳彩妍, 徐方程, 吴孟龙, 等 空气轴承支撑的燃料电池离心空压机转子动力学分析[J]. 汽车零部件, 2020, (11): 6- 9 JIN Caiyan, XU Fangcheng, WU Menglong, et al Calculation and analysis of air bearing centrifugal compressor rotor dynamics for fuel cells[J]. Automobile Parts, 2020, (11): 6- 9
|
|
|
[12] |
彭万欢, 郑越青, 徐刚 空气动压箔片轴承启停性能的实验研究[J]. 润滑与密封, 2011, 36 (7): 52- 55 PENG Wanhuan, ZHENG Yueqing, XU Gang Experimental study on the start-stop characteristic of foil air bearing[J]. Lubrication Engineering, 2011, 36 (7): 52- 55
doi: 10.3969/j.issn.0254-0150.2011.07.013
|
|
|
[13] |
王云飞. 气体润滑理论与气体轴承设计[M]. 北京: 机械工业出版社, 1999: 29–31.
|
|
|
[14] |
十合晋一. 气体轴承设计指南[M]. 东京: 共立出版株式会社, 2002: 22.
|
|
|
[15] |
刘暾, 刘育华, 陈世杰. 静压气体润滑[M]. 哈尔滨: 哈尔滨工业大学出版社, 1990.
|
|
|
[16] |
李鑫. 高速艇喷水推进器流场特性数值模拟[D]. 镇江: 江苏科技大学, 2014. LI Xin. Numerical simulation of flow field characteristics of the high-speed craft waterjet propulsion [D]. Zhenjiang: Jiangsu University of Science and Technology, 2014.
|
|
|
[17] |
陈伟威 基于RNG k-$\varepsilon $紊流模型的溢洪道水力特性数值模拟[J]. 水利科学与寒区工程, 2023, 6 (1): 10- 13 CHEN Weiwei Numerical simulation of hydraulic characteristics of spillway based on RNG k-$\varepsilon $ turbulence model[J]. Hydro Science and Cold Zone Engineering, 2023, 6 (1): 10- 13
doi: 10.3969/j.issn.2096-5419.2023.01.004
|
|
|
[18] |
郭晓娟. 脊状表面减阻特性及其结构优化设计研究[D]. 西安: 西北工业大学, 2007. GUO Xiaojuan. Research on drag-reduction characteristics of groove surface and its structural optimization design [D]. Xi’an: Northwestern Polytechnical University, 2007.
|
|
|
[19] |
杜金威, 王均星, 李辉成 阳升观台阶溢洪道水流数值模拟研究[J]. 武汉大学学报: 工学版, 2020, 53 (2): 110- 116 DU Jinwei, WANG Junxing, LI Huicheng Numerical simulation of the water flow in the stepped spillway of Yangshengguan reservoir[J]. Engineering Journal of Wuhan University, 2020, 53 (2): 110- 116
|
|
|
[20] |
王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 124−125.
|
|
|
[21] |
LI Q, LIU S, PAN X, , et al A new method for studying the 3D transient flow of misaligned journal bearings in flexible rotor-bearing systems[J]. Journal of Zhejiang University: Science A, 2012, 13 (4): 293- 310
|
|
|
[22] |
HEINDEL S, MÜLLER P C, RINDERKNECHT S Unbalance and resonance elimination with active bearings on general rotors[J]. Journal of Sound and Vibration, 2018, (431): 422- 440
|
|
|
[23] |
ZHANG C, HONG W, ZHENG S The dynamic pressure effect of gas microbearings under high rotational speed[J]. Engineering Applications of Computational Fluid Mechanics, 2022, 16: 1,1264- 1278
|
|
|
[24] |
李宏钦. 氢燃料电池车用高速离心式压缩机的设计及研究[D]. 杭州: 浙江大学, 2019. LI Hongqin. Design and research of highspeed centrifugal compressor for hydrogen fuel cell vehicle [D]. Hangzhou: Zhejiang University, 2019.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|