|
|
Design of axial self-inductive displacement sensor based on LC parallel resonance |
Hongzhou TANG( ),Jin ZHOU*( ),Chaowu JIN,Yuanping XU |
College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China |
|
|
Abstract An axial self-inductive displacement sensor based on LC parallel resonance was proposed in order to meet the development demands for higher precision in magnetic bearings. The sensitivity of the sensor was improved by increasing the rate of change of equivalent inductance in the resonance circuit. The working principle of the sensor was analyzed. The relationship between the design parameters of the sensor and its sensitivity was analyzed through finite element simulation. Then a measurement circuit for the sensor was designed, and the influence of LC parallel resonance on the sensitivity of the sensor was analyzed combined with finite element simulation and numerical simulation. An experimental setup was constructed to test the static performance of the sensor. Results show that the proposed sensor exhibits higher sensitivity and lower linearity compared with traditional displacement sensors.
|
Received: 10 May 2023
Published: 26 April 2024
|
|
Fund: 国家自然科学基金资助项目(52075239, 52275537). |
Corresponding Authors:
Jin ZHOU
E-mail: hztang@nuaa.edu.cn;zhj@nuaa.edu.cn
|
基于LC并联谐振的轴向自感式位移传感器设计
为了满足磁悬浮轴承面向更高精度的发展需求,提出基于LC并联谐振的轴向自感式位移传感器. 通过增大谐振回路的等效电感变化率,提高传感器的灵敏度. 分析传感器的工作原理. 通过有限元仿真,研究传感器设计参数与灵敏度之间的关系. 设计传感器的测量电路,结合有限元仿真和数值仿真,分析LC并联谐振对传感器灵敏度的影响. 搭建实验台,对传感器的静态性能进行测试. 结果表明,相对于传统的位移传感器,提出的传感器具有更高的灵敏度与更低的线性度.
关键词:
位移传感器,
并联谐振,
测量电路,
灵敏度,
磁悬浮轴承
|
|
[1] |
ROYO-SILVESTRE I, BEATO-LOPEZ J J, CASTELLANO-ALDAVE J C, et al Thrust actuator with passive restoration force for wide gap magnetic bearings[J]. Journal of Magnetism and Magnetic Materials, 2019, 476: 342- 348
doi: 10.1016/j.jmmm.2018.12.085
|
|
|
[2] |
SONI T, DUTT J K, DAS A S Parametric stability analysis of active magnetic bearing supported rotor system with a novel control law subject to periodic base motion[J]. IEEE Transactions on Industrial Electronics, 2020, 67 (2): 1160- 1170
doi: 10.1109/TIE.2019.2898604
|
|
|
[3] |
WANG K, MA X, LIU Q, et al Multiphysics global design and experiment of the electric machine with a flexible rotor supported by active magnetic bearing[J]. IEEE/ASME Transactions on Mechatronics, 2019, 24 (2): 820- 831
doi: 10.1109/TMECH.2019.2892392
|
|
|
[4] |
SUN J, ZHOU H, JU Z Dynamic stiffness analysis and measurement of radial active magnetic bearing in magnetically suspended molecular pump[J]. Scientific Reports, 2020, 10 (1): 1401
doi: 10.1038/s41598-020-57523-8
|
|
|
[5] |
URRETA H, AGUIRRE G, KUZHIR P, et al Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools[J]. Journal of Intelligent Material Systems and Structures, 2019, 30 (15): 2257- 2271
doi: 10.1177/1045389X19862358
|
|
|
[6] |
GUAN X, ZHOU J, JIN C, et al Adaptive surge detection of magnetic suspension centrifugal blower based on rotor radial displacement signal and SOGI-FLL with prefilter[J]. Measurement Science and Technology, 2022, 33 (6): 065304
doi: 10.1088/1361-6501/ac5a9a
|
|
|
[7] |
CAI K, DENG Z, PENG C, et al Suppression of harmonic vibration in magnetically suspended centrifugal compressor using zero-phase odd-harmonic repetitive controller[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (9): 7789- 7797
|
|
|
[8] |
ZHU H, LIU T Rotor displacement self-sensing modeling of Six-Pole radial hybrid magnetic bearing using improved particle swarm optimization support vector machine[J]. IEEE Transactions on Power Electronics, 2020, 35 (11): 12296- 12306
doi: 10.1109/TPEL.2020.2982746
|
|
|
[9] |
ZHENG S, WANG C Rotor balancing for magnetically levitated TMPs integrated with vibration self-sensing of magnetic bearings[J]. IEEE/ASME Transactions on Mechatronics, 2021, 26 (6): 3031- 3039
doi: 10.1109/TMECH.2021.3051372
|
|
|
[10] |
BONFITTO A, GABAI R, TONOLI A, et al Resonant inductive displacement sensor for active magnetic bearings[J]. Sensors and Actuators A: Physical, 2019, 287: 84- 92
doi: 10.1016/j.sna.2019.01.011
|
|
|
[11] |
LI W, HU J, SU Z, et al Radial displacement detection using sensing coils weakly coupled with magnetic bearing[J]. IEEE Sensors Journal, 2022, 22 (21): 20352- 20359
doi: 10.1109/JSEN.2022.3206112
|
|
|
[12] |
REN Z, LI H, CHEN X, et al Impedance modeling of self-inductive displacement sensor considering iron core reluctance and flux leakage[J]. IEEE Sensors Journal, 2022, 22 (9): 8583- 8595
doi: 10.1109/JSEN.2022.3161323
|
|
|
[13] |
WANG K, ZHANG L, LE Y, et al Optimized differential self-inductance displacement sensor for magnetic bearings: design, analysis and experiment[J]. IEEE Sensors Journal, 2017, 17 (14): 4378- 4387
doi: 10.1109/JSEN.2017.2710135
|
|
|
[14] |
YU J, ZHOU Y, MO N, et al Theoretical and experimental analysis on the influence of rotor non-mechanical errors of the inductive transducer in active magnetic bearings[J]. Sensors (Basel, Switzerland), 2018, 18 (12): 4376
doi: 10.3390/s18124376
|
|
|
[15] |
REN Z, LI H, YU W Research on coil impedance of self-inductive displacement sensor considering core eddy current[J]. Sensors, 2021, 21 (18): 6292
doi: 10.3390/s21186292
|
|
|
[16] |
LI H, REN Z, CHEN R, et al Influence of structural parameters on the static performance of self-inductive radial displacement sensor[J]. Measurement Science and Technology, 2022, 33 (12): 125106
doi: 10.1088/1361-6501/ac8d21
|
|
|
[17] |
时振刚, 周燕, 赵晶晶, 等. 基于自感式可测量转子径轴向位移的新型传感器[C]//全国新堆与研究堆学术会议. 伊犁: 中国核学会, 2006. SHI Zhengang, ZHOU Yan, ZHAO Jingjing, et al. A new sensor based on self-inductive measurement of rotor radial and axial displacement [C]// National Symposium on Advanced Reactors and Research Reactors . Ili: China Nuclear Society, 2006.
|
|
|
[18] |
SILLANPÄÄ T, SMIRNOV A, JAATINEN P, et al Three-axis inductive displacement sensor using phase-sensitive digital signal processing for industrial magnetic bearing applications[J]. Actuators, 2021, 10 (6): 115
doi: 10.3390/act10060115
|
|
|
[19] |
LI W, HU J, SU Z, et al Analysis and design of axial inductive displacement sensor[J]. Measurement, 2022, 187: 110159
doi: 10.1016/j.measurement.2021.110159
|
|
|
[20] |
CHEN S C, LE D K, NGUYEN V S Inductive displacement sensors with a notch filter for an active magnetic bearing system[J]. Sensors, 2014, 14 (7): 12640- 12657
doi: 10.3390/s140712640
|
|
|
[21] |
刘亚婷, 张剀, 徐旸 基于集成解调芯片的电感式位移传感器[J]. 储能科学与技术, 2019, 8 (5): 891- 896 LIU Yating, ZHANG Kai, XU Yang Inductive displacement sensors based on the integrated demodulation chip[J]. Energy Storage Science and Technology, 2019, 8 (5): 891- 896
|
|
|
[22] |
HU J, LI W, SU Z, et al Analytical design and experiment of radial inductive displacement sensor with full-bridge structure for magnetic bearings[J]. The Review of Scientific Instruments, 2021, 92 (6): 064703
doi: 10.1063/5.0047059
|
|
|
[23] |
WANG H, JU B, LI W, et al Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation[J]. Sensors and Actuators A: Physical, 2014, 211 (5): 98- 104
|
|
|
[24] |
CAO Z, HUANG Y, PENG F, et al Driver circuit design for a new eddy current sensor in displacement measurement of active magnetic bearing systems[J]. IEEE Sensors Journal, 2022, 22 (17): 16945- 16951
doi: 10.1109/JSEN.2022.3194567
|
|
|
[25] |
BLEULER H, COLE M, KEOGH P, et al. Magnetic bearings: theory, design, and application to rotating machinery [M]. Heidelberg: Springer, 2009.
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|