Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2024, Vol. 58 Issue (1): 197-206    DOI: 10.3785/j.issn.1008-973X.2024.01.021
Effect of fine metallic Z-pin on compressive property of open-hole composite laminate
Xiaowen SONG1,2(),Jiacheng DU3,Shaohua FEI1,2,Huiming DING1,2,4,*(),Jinliang WANG3,Yu GAO1,2
1. State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
3. Polytechnic Institute, Zhejiang University, Hangzhou 310015, China
4. Donghai Laboratory, Zhoushan 316021, China
Download: HTML     PDF(3090KB) HTML
Export: BibTeX | EndNote (RIS)      


The influence of fine (?0.11 mm) metallic Z-pin volume fraction and arrangement on the mechanical performance and failure behavior of the open-hole laminates compression was analyzed through open-hole compression test and parametric multi-scale finite element model. Discrete solid element was employed to represent Z-pins, and the 3D Hashin failure criterion was utilized to assess the initial in-plane damage. Then the unstable propagation of kink band was effectively simulated during structural failure. Results showed that the compressive strength of all Z-pinned open-hole laminates was lower than that of specimens without Z-pins. The bridging effect between Z-pins and laminates was enhanced with an increase in Z-pin volume fraction, resulting in increased compressive strength of Z-pinned open-hole laminates. The delaminated area around the hole was suppressed, leading to a maximum reduction of 67% in the damaged area. The variation of Z-pin arrangement did not significantly affect the compression strength of open-hole laminates under the same volume fraction. The maximum relative error between the finite element model simulated results of Z-pinned open-hole laminates and experimental results was 8.6%.

Key wordsZ-pin      composite      parameterized modelling      progressive damage      open-hole laminate     
Received: 13 March 2023      Published: 07 November 2023
CLC:  V 258  
  TB 332  
Fund:  浙江省重点研发计划资助项目(2020C01039)
Corresponding Authors: Huiming DING     E-mail:;
Cite this article:

Xiaowen SONG,Jiacheng DU,Shaohua FEI,Huiming DING,Jinliang WANG,Yu GAO. Effect of fine metallic Z-pin on compressive property of open-hole composite laminate. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 197-206.

URL:     OR


通过开孔板压缩试验和建立的参数化多尺度有限元模型,获得微细(?0.11 mm)金属Z-pin植入体积分数和排布方式对开孔板压缩力学性能和失效行为的影响规律. 采用离散实体单元代表Z-pin,选用3D Hashin失效准则判断面内起始损伤,可以有效地模拟结构失效过程中扭结现象的不稳定扩展. 结果表明,所有加Z-pin开孔板的压缩强度均低于无Z-pin试样. 随着Z-pin植入体积分数的增加,Z-pin与层合板之间的桥联作用增强,加Z-pin开孔层合板压缩强度增加,开孔周围分层损伤区域受到抑制,损伤区域面积最高减小了67%. 在相同的体积分数下,Z-pin排布变化对开孔板压缩强度没有显著影响. 加Z-pin开孔板有限元模型的模拟结果与试验结果之间的最大相对误差为8.6%.

关键词: Z-pin,  复合材料,  参数化建模,  渐进损伤,  开孔层合板 
Fig.1 Schematic diagram of OHC specimen size
Fig.2 Schematic diagram of Z-pin implantation lattice
Fig.3 Ultrasound guided Z-pin device
Fig.4 Vacuum bag for curing
Fig.5 Open-hole compression experimental environment
Fig.6 OHC experimental and FEA load-displacement curve
试验编号 $ \varphi $/% $ {\sigma _{\text{c}}} $/MPa $ {\text{CV}} $/%
A 0.00 335.25 3.63
B 0.15 319.65 (?4.65%) 4.62
C 0.11 317.86 (?5.19%) 4.63
D 0.04 307.26 (?8.35%) 2.49
E 0.11 317.76 (?5.22%) 3.50
Tab.1 Experimental results of OHC
Fig.7 Schematic diagram of resin rich area
Fig.8 Kink band propagation process of OHC specimen
Fig.9 Failure appearance on thickness direction
Fig.10 Configuration of finite element model
Fig.11 OHC FE model results for different failure criterions
Fig.12 Intralaminar failure bilinear degradation model
参数 参数值 参数 参数值
${{{E}}_{\text{1}}}{\text{/GPa}}$ 90 ${X_{\text{T}}}/{\text{MPa}}$ 1700
${{{E}}_{\text{2}}}{\text{/GPa}}$ 7.1 ${X_{\text{C}}}/{\text{MPa}}$ 900
${{{E}}_{\text{3}}}{\text{/GPa}}$ 7.1 ${Y_{\text{T}}}/{\text{MPa}}$ 55
${\nu _{{\text{12}}}}$ 0.34 ${Y_{\text{C}}}/{\text{MPa}}$ 100
${\nu _{{\text{13}}}}$ 0.34 ${Z_{\text{T}}}/{\text{MPa}}$ 55
${\nu _{{\text{23}}}}$ 0.4 ${Z_{\text{C}}}/{\text{MPa}}$ 100
${G_{{\text{12}}}}{\text{/MPa}}$ 2700 ${S_{ {\text{12} } } }{\text{/MPa} }$ 100
${G_{{\text{13}}}}{\text{/MPa}}$ 2700 ${S_{ {\text{13} } } }{\text{/MPa} }$ 100
${G_{{\text{23}}}}{\text{/MPa}}$ 2500 ${S_{ {\text{23} } } }{\text{/MPa} }$ 55
Tab.2 Laminar material property parameters of FE model
参数 参数值
Cohesive单元 Z-pin Cohesive接触
${K_{ {\text{nn} } } }/({\text{N} }\cdot{\text{mm} }^{-3} )$ 5×104 2188.8
$ {K_{{\text{ss}}}},{K_{{\text{tt}}}}/({\text{N}}\cdot{\text{mm}}^{-3}) $ 5×104 10944.1
$ \sigma _{\text{n}}^0/{\text{MPa}} $ 30 273.6
$ \sigma _{\text{s}}^0,\sigma _{\text{t}}^0/{\text{MPa}} $ 70 789.2
$ G_{\rm{n}}^{\rm{C}}/({\text{kJ}}\cdot{{\text{m}}^{{-2}}}) $ 0.6 1103.5
$ G_{\rm{s}}^{\rm{C}},G_{\rm{t}}^{\rm{C}}/({\text{kJ}}\cdot {{\text{m}}^{{-2}}}) $ 1.2 1325.5
Tab.3 Cohesive interface property
Fig.13 Flowchart of Z-pin open-hole laminates modelling algorithm
试验组别 $ {\sigma _{\text{c}}} $/MPa $ \sigma _{\text{c}}^{{\text{sim}}} $/MPa $ \delta $/%
A 335.25 340.83 1.67
B 319.65 347.17 8.61
C 317.86 332.17 4.50
D 307.26 317.00 3.17
E 317.76 330.25 3.93
Tab.4 Experimental and simulated compressive strength of open-hole laminates
Fig.14 Progressive failure of OHC
Fig.15 Delamination propagation status
Fig.16 Finite element analysis results of Z-pin contact behavior
[1]   FALCÓ O, ÁVILA R L, TIJS B, et al Modelling and simulation methodology for unidirectional composite laminates in a virtual test lab framework[J]. Composite Structures, 2018, 190: 137- 159
doi: 10.1016/j.compstruct.2018.02.016
[2]   WU Y, CHENG X, CHEN S, et al In situ formation of a carbon nanotube buckypaper for improving the interlaminar properties of carbon fiber composites[J]. Materials and Design, 2021, 202: 109535
doi: 10.1016/j.matdes.2021.109535
[3]   VAN DER SYPT P, CHÉRIF M, BOIS C Analysis of the fatigue behaviour of laminated composite holes subjected to pin-bearing loads[J]. International Journal of Fatigue, 2017, 103: 86- 98
doi: 10.1016/j.ijfatigue.2017.05.025
[4]   孙一凡. Z-pin增强复合材料开孔层合板抗压和抗冲击性能研究[D]. 南京: 南京航空航天大学, 2019.
SUN Yifan. Research on compression and impact resistance of open-hole composite laminates reinforced by Z-pin [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[5]   SALEEM M, TOUBAL L, ZITOUNE R, et al Investigating the effect of machining processes on the mechanical behavior of composite plates with circular holes[J]. Composites Part A: Applied Science and Manufacturing, 2013, 55: 169- 177
doi: 10.1016/j.compositesa.2013.09.002
[6]   陈燕, 葛恩德, 傅玉灿, 等 碳纤维增强树脂基复合材料制孔技术研究现状与展望[J]. 复合材料学报, 2015, 32 (2): 301- 316
CHEN Yan, GE En-de, FU Yu-can, et al Review and prospect of drilling technologies for carbon fiber reinforced polymer[J]. Acta Materiae Compositae Sinica, 2015, 32 (2): 301- 316
[7]   WANG Z, ZHOU S, ZHANG J, et al Progressive failure analysis of bolted single-lap composite joint based on extended finite element method[J]. Materials and Design, 2012, 37: 582- 588
doi: 10.1016/j.matdes.2011.08.039
[8]   ZHOU S, SUN Y, MUHAMMAD R, et al Progressive damage simulation of scaling effects on open-hole composite laminates under compression[J]. Journal of Reinforced Plastics and Composites, 2017, 36 (18): 1369- 1383
doi: 10.1177/0731684417708614
[9]   HIGUCHI R, WARABI S, YOSHIMURA A, et al Experimental and numerical study on progressive damage and failure in composite laminates during open-hole compression tests[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106300
doi: 10.1016/j.compositesa.2021.106300
[10]   TALREJA R, SINGH C V. Damage and failure of composite materials [M]. Cambridge: Cambridge University Press, 2012.
[11]   ZHENG Y, CHENG X, YASIR B Effect of stitching on plain and open-hole strength of CFRP laminates[J]. Chinese Journal of Aeronautics, 2012, 25 (3): 473- 484
doi: 10.1016/S1000-9361(11)60411-1
[12]   HUANG J, BOISSE P, HAMILA N Simulation of the forming of tufted multilayer composite preforms[J]. Composites Part B: Engineering, 2021, 220: 108981
doi: 10.1016/j.compositesb.2021.108981
[13]   MOURITZ A P Review of z-pinned laminates and sandwich composites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 139: 106128
doi: 10.1016/j.compositesa.2020.106128
[14]   CHENG J, XU Y, ZHANG W, et al A review on the multi-scale simulation of Z-pinned composite laminates[J]. Composite Structures, 2022, 295: 115834
doi: 10.1016/j.compstruct.2022.115834
[15]   FISHPOOL D T, REZAI A, BAKER D, et al Interlaminar toughness characterisation of 3D woven carbon fibre composites[J]. Plastics, Rubber and Composites, 2013, 42 (3): 108- 114
doi: 10.1179/1743289812Y.0000000036
[16]   STEGSCHUSTER G, PINGKARAWAT K, WENDLAND B, et al Experimental determination of the mode I delamination fracture and fatigue properties of thin 3D woven composites[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 308- 315
doi: 10.1016/j.compositesa.2016.02.008
[17]   MOURITZ A P, JAIN L K Further validation of the Jain and Mai models for interlaminar fracture of stitched composites[J]. Composites Science and Technology, 1999, 59 (11): 1653- 1662
doi: 10.1016/S0266-3538(99)00027-5
[18]   李梦佳. Z-pin增强复合材料的力学性能研究[D]. 南京: 南京航空航天大学, 2019.
LI Mengjia. Research on the mechanical properties of Z-pinned composites [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[19]   FEI S, WANG W, DING H, et al Strengthening of composite T-joints using Ø 0.11 mm Z-pins via an ultrasound-guided insertion process[J]. Composites Part C: Open Access, 2022, 8: 100268
doi: 10.1016/j.jcomc.2022.100268
[20]   LI M, CHE Z, WANG S, et al Tuning interlaminar fracture toughness of fine z-pin reinforced polymer composite[J]. Materials and Design, 2021, 212: 110293
[21]   FEI S, WANG W, WANG H, et al Effect of Ø0.11 mm Z-pinning on the properties of composite laminates via an ultrasound guided insertion process[J]. Composites Science and Technology, 2021, 213: 108906
doi: 10.1016/j.compscitech.2021.108906
[22]   孙一凡, 李勇, 还大军, 等 Z-pin增强复合材料开孔层合板压缩性能[J]. 航空动力学报, 2019, (4): 885- 893
SUN Yifan, LI Yong, HUAN Dajun, et al Compression performance of open-hole composite laminates reinforced by Z-pin[J]. Journal of Aerospace Power, 2019, (4): 885- 893
[23]   MOURITZ A P Review of z-pinned composite laminates[J]. Composites Part A: Applied Science and Manufacturing, 2007, 38 (12): 2383- 2397
doi: 10.1016/j.compositesa.2007.08.016
[24]   GAO Y, FEI S, SONG X, et al Enhancement of composite open-hole tensile strength via fine Z-pins arrangements[J]. International Journal of Mechanical Sciences, 2022, 236: 107752
doi: 10.1016/j.ijmecsci.2022.107752
[25]   D30 Committee. Test method for open-hole compressive strength of polymer matrix composite laminates [S]. West Conshohocken: ASTM, 2014.
[26]   HASHIN Z Failure criteria for unidirectional fiber composites[J]. Journal of Applied Mechanics, 1980, 47 (2): 329- 334
doi: 10.1115/1.3153664
[27]   HU H, WEI Q, LIU B, et al Progressive damage behaviour analysis and comparison with 2D/3D Hashin failure models on carbon fibre–reinforced aluminium laminates[J]. Polymers, 2022, 14 (14): 2946
doi: 10.3390/polym14142946
[28]   LIU P F, LIAO B B, JIA L Y, et al Finite element analysis of dynamic progressive failure of carbon fiber composite laminates under low velocity impact[J]. Composite Structures, 2016, 149: 408- 422
doi: 10.1016/j.compstruct.2016.04.012
[29]   XU Y, GAO Y, WU C, et al On design of carbon fiber reinforced plastic (CFRP) laminated structure with different failure criteria[J]. International Journal of Mechanical Sciences, 2021, 196: 106251
doi: 10.1016/j.ijmecsci.2020.106251
[30]   蔡立成. 铺放参数及Z-pin植入对复合材料层合板厚度方向力学行为的影响研究[D]. 杭州: 浙江大学, 2021.
CAI Licheng. Effect of laying parameters and Z-pin insertion on mechanical behavior of composite laminates in thickness direction [D]. Hangzhou: Zhejiang University, 2021.
[31]   朱春润. 椭圆头无耳托板自锁螺母拉铆成形机理及其CFRP螺栓连接接头性能研究[D]. 杭州: 浙江大学, 2022.
ZHU Chunrun. Research on the forming mechanism of oval-head no-lug self-locking nut and its connection performance of CFRP bolted joint [D]. Hangzhou: Zhejiang University, 2022.
[32]   BENZEGGAGH M L, KENANE M Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus[J]. Composites Science and Technology, 1996, 56 (4): 439- 449
doi: 10.1016/0266-3538(96)00005-X
[33]   HUANG T, HUANG Y, LIN Y, et al Experimental and numerical simulation studies of failure behaviour of carbon fibre reinforced aluminum laminates under transverse local quasi-static loading[J]. Journal of Physics: Conference Series, 2020, 1624 (2): 022042
doi: 10.1088/1742-6596/1624/2/022042
[1] Jia-run ZHENG,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on hysteretic behavior of composite slab and cast-in-situ beam with different connection modes[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1718-1726.
[2] Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.
[3] Zhuang TIAN,Guan-yan XIAO,Wei-liang JIN,Jin XIA,Xin CHENG. Diffusion model of multi ions in concrete based on composite theory[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1393-1401.
[4] Yi-fan WU,Wen-hao PAN,Yao-zhi LUO. Optimal design of long span steel-concrete composite floor system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 988-996.
[5] Shao-hua FEI,Hui-ming DING,Hai-jin WANG,Jiang-xiong LI. Ultrasound-guided fine Z-pin insertion system[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 657-665.
[6] Tong XIAO,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on flexural performance of composite slab with groove splicing joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 842-854.
[7] Zhi-yuan MA,Jiang LIU,Yong-jian LIU,Yi LYU,Guo-jing ZHANG. Regional difference of value taking of effective temperature for steel-concrete composite girder bridges[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 909-919.
[8] Hua-zhen LIU,Hao ZHOU. Photocatalytic performance of ZnO/g-C3N4 composite photocatalysts in microfluidic reactors[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 476-484.
[9] Hong-zhe ZHANG,Xu ZHANG,Xiao-chun ZHU,Yong-jie BAO. Surface removal mechanism study of SiCp/Al composites based on single-point cutting test[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(2): 388-397.
[10] Lin HONG,Cong-cong LUAN,Xin-hua YAO,Ning-guo DONG,Yu-yang JI,Cheng-cheng NIU,Ze-quan DING,Xue-yu SONG,Jian-zhong FU. In-situ additive manufacturing equipment and technology of carbon fiber composites[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2119-2126.
[11] Wei-hang CHEN,Qiang LUO,Teng-fei WANG,Wen-sheng ZHANG,Liang-wei JIANG. Reliability analysis of post-construction settlement of DMC composite foundation and design optimization[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2019-2027.
[12] Qing-hua LI,Ning BAO,Guo-zhong WANG. Experimental study on interface shear fracture of UHTCC and steel[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 84-91.
[13] Sheng-tao XIANG,Da WANG. Model interactive modification method based on improved quantum genetic algorithm[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 100-110.
[14] Xiao-nan JIANG,Gang XU,Wei-xiang CHEN. Synthesis of Z-CoS2-MoS2/rGO composite and its electrochemical lithium storage performance[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(1): 152-160.
[15] Wei WANG,Hong-lai SONG,Chao-chao QUAN,yu LI,Guo-kai ZHEN,Hao-tian ZHAO. Seismic damage repair and lateral stiffness analysis of horizontal corrugated steel plate concrete composite shear wall[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1694-1704.