Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2022, Vol. 56 Issue (11): 2119-2126    DOI: 10.3785/j.issn.1008-973X.2022.11.002
    
In-situ additive manufacturing equipment and technology of carbon fiber composites
Lin HONG1(),Cong-cong LUAN1,2,*(),Xin-hua YAO1,Ning-guo DONG1,Yu-yang JI1,Cheng-cheng NIU1,Ze-quan DING1,Xue-yu SONG3,4,Jian-zhong FU1,2
1. School of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
2. Engineering Training Center, Zhejiang University, Hangzhou 310058, China
3. College of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
4. The 41st Institute, The Fourth Academy of CASA, Xi’an 710025, China
Download: HTML     PDF(3089KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A laser-assisted in-situ additive manufacturing platform for carbon fiber reinforced thermoplastic composites (CFRTC) was designed to achieve high quality and effcient in-situ additive manufacturing of CFRTC. The manufacturing process parameters were investigated by taking example of contimuaus carbon fiber reinforced thermoplastics T800 CF/PEEK UD prepreg strip. The several circle specimens were prepared to measure the shear strength and the cross-sectional morphology of the specimen was observed through a scanning electron microscope, which helped to determine the feasibility parameters range and optimal process parameters. The results showed that the strength of the manufactured CF/PEEK parts was greatly affected by the temperature and speed. The shear strength increased at first and then decreased with the increase of both the temperature and speed. The maximum of shear strength as well as the minimum micro-defect were achieved when the temperature was 450 ℃ and the speed was 30 mm/s.



Key wordslaser focused heating      carbon fiber      CF/PEEK      thermoplastic composites      in-situ additive manufacturing     
Received: 20 January 2022      Published: 02 December 2022
CLC:  TH 16  
Fund:  国家自然科学基金资助项目(52175440,51905478);浙江省重点研发计划资助项目(2020C01069)
Corresponding Authors: Cong-cong LUAN     E-mail: 21925015@zju.edu.cn;lccshdg@zju.edu.cn
Cite this article:

Lin HONG,Cong-cong LUAN,Xin-hua YAO,Ning-guo DONG,Yu-yang JI,Cheng-cheng NIU,Ze-quan DING,Xue-yu SONG,Jian-zhong FU. In-situ additive manufacturing equipment and technology of carbon fiber composites. Journal of ZheJiang University (Engineering Science), 2022, 56(11): 2119-2126.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2022.11.002     OR     https://www.zjujournals.com/eng/Y2022/V56/I11/2119


碳纤维复合材料原位增材制造设备与工艺

为了实现碳纤维增强热塑性复合材料(CFRTC)高质高效原位增材制造,设计一种激光聚焦加热CFRTC原位增材制造平台,以单向连续碳纤维增强聚醚醚酮热塑性复合材料(T800 CF/PEEK UD)预浸带为原材料开展CFRTC成型工艺相关研究. 制备环形样件进行剪切强度测试表征,通过扫描电子显微镜观察样件的截面形貌,确立激光聚焦加热CF/PEEK的可行工艺参数窗口与较优工艺参数. 结果表明,CF/PEEK成型件强度受激光聚焦加热温度、成型速度影响较大,均表现出随激光聚焦加热温度与成型速度的增加,先增大后减小,当成型速度为30 mm/s和激光加热温度为450 ℃时,环形样件有较高的剪切强度,并且表现出较少的微观缺陷.


关键词: 激光聚焦加热,  碳纤维,  CF/PEEK,  热塑性复合材料,  原位增材制造 
Fig.1 Robot-assisted laser focusing heating in-situ additive manufacturing platform of CFRTC
Fig.2 Structure of equipment
Fig.3 Shape of laser spot
参数 数值
树脂质量分数/% 34±3
单层厚度/mm 0.24±0.02
宽度/mm 6.35
树脂玻璃化转变温度/℃ 143
树脂熔融温度/℃ 343
Tab.1 Basic parameters of CF/PEEK prepreg tape
Fig.4 Surface morphology of CF/PEEK prepreg tape irradiated by different laser temperatures
Fig.5 Circle sample forming process and forming sample
Fig.6 Standard ring test specimen
Fig.7 Short-beam shear strength testing system of polymer matrix composite materials
Fig.8 Load-displacement curve of different samples at when the temperature was 450 ℃ and the spead was 30 mm/s
Fig.9 Failure mode of sample: bending fracture and delamination failure
Fig.10 Laser temperature interlaminar shear strength comprehensive curve
Fig.11 Forming speed interlaminar shear strength comprehensive curve
Fig.12 Synthetic influence surface of laser temperature and forming speed on interlaminar shear strength
Fig.13 Cross-section micro-morphology of samples with different forming speeds when the temperature was 450 ℃
Fig.14 CF/PEEK in-situ manufacturing sample at when the temperature was 450 ℃ and the spead was 30 mm/s
[1]   SRIVASTAVA R, UPRETI M, AWASTHI M Biosusceptibility studies on carbon fiber composites for aerospace applications[J]. Indian Journal of Engineering and Materials Sciences, 2003, 10 (2): 143- 147
[2]   包建文, 蒋诗才, 张代军 航空碳纤维树脂基复合材料的发展现状和趋势[J]. 科技导报, 2018, 36 (19): 52- 63
BAO Jian-wen, JIANG Shi-cai, ZHANG Dai-jun Current status and trends of aeronautical resin matrix composites reinforced by carbon fiber[J]. Science and Technology Review, 2018, 36 (19): 52- 63
[3]   曹忠亮, 富宏亚, 付云忠, 等 基于自动铺放技术的热塑性复合材料原位固化成型研究进展: 热传导行为及层间性能[J]. 材料导报, 2019, 33 (5): 894- 900
CAO Zhong-liang, FU Hong-ya, Fu Yun-zhong, et al A review of tobotic prepreg placement and in-situ consolidation for manufacturing fiber-reinforced thermoplastic composites: heat transfer behavior and interlaminar properties[J]. Materials Reports, 2019, 33 (5): 894- 900
doi: 10.11896/cldb.201905022
[4]   杜善义 复合材料创新驱动产业发展[J]. 科技导报, 2016, 34 (8): 1
DU Shan-yi Innovation in composite materials drives industrial development[J]. Science and Technology Review, 2016, 34 (8): 1
[5]   MARSH G Automating aerospace composites production with fiber placement[J]. Reinforced Plastics, 2011, 55 (3): 32- 37
doi: 10.1016/S0034-3617(11)70075-3
[6]   NEHA Y, AMAR P A review on additive manufacturing of polymers composites[J]. Materials Today: Proceedings, 2021, 44: 4150- 4157
doi: 10.1016/j.matpr.2020.10.490
[7]   PARANDOUSH P, LIN D A review on additive manufacturing of polymer-fiber composites[J]. Composite Structures, 2017, 182: 36- 53
doi: 10.1016/j.compstruct.2017.08.088
[8]   张力, 张以河, 王雷, 等 热固性树脂基复合材料的资源化再利用进展[J]. 复合材料科学与工程, 2018, 8: 106- 113
ZHANG Li, ZHANG Yi-he, WANG Li, et al Progress in resource reclamation of thermoset polymer composites[J]. Composites Science and Engineering, 2018, 8: 106- 113
[9]   HOFSTÄTTER T, PEDERSEN D, TOSELLO G, et al Applications of fiber-reinforced polymers in additive manufacturing[J]. Procedia CIRP, 2017, 66: 312- 316
doi: 10.1016/j.procir.2017.03.171
[10]   秦滢杰, 韩建平, 赵凯 热塑性复合材料在线成型设备研究进展[J]. 复合材料科学与工程, 2019, 5: 116- 120
QIN Ying-jie, HAN Jian-ping, ZHAO Kai Developments in on-line procrssing equipment of thermoplastic composites[J]. Composites Science and Engineering, 2019, 5: 116- 120
[11]   冯喜平, 张盛源, 梁群, 等 热塑性树脂基复合材料激光原位固化研究进展[J]. 中国塑料, 2021, 35 (6): 111- 124
FENG Xi-ping, ZHANG Sheng-yuan, LIANG Qun, et al A review of laser in-situ curing of thermoplastic composites[J]. China Plastics, 2021, 35 (6): 111- 124
[12]   王磊. 纱架与铺丝头一体化纤维铺放系统研究[D]. 哈尔滨: 哈尔滨工业大学, 2015: 16-31.
WANG Lei. Research on integration technique of creels and fiber placement head for automated fiber placement machine [D]. Harbin: Harbin Institute of Technology, 2015: 16-31.
[13]   AUGUST Z, OSTRANDER G, MICHASIOW J Recent developments in automated fiber placement of thermoplastic composites[J]. SAMPE Journal, 2014, 50 (2): 30- 37
[14]   FUJIHARA K, HUANG Z, RAMAKRISHNA S, et al Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites[J]. Composites Science and Technology, 2004, 64 (16): 2525- 2534
doi: 10.1016/j.compscitech.2004.05.014
[15]   王凯, 刘寒松, 肇研 连续纤维增强热塑性树脂基复合材料自动铺放技术研究进展[J]. 航空制造技术, 2021, 64 (11): 41- 49
WANG Kai, LIU Han-song, ZHAO Yan Advance in automated fiber placement technology on continuous fiber reinforced thermoplastic resin matrix composites[J]. Aeronautical Manufacturing Technology, 2021, 64 (11): 41- 49
[16]   陈吉平, 李岩, 刘卫平, 等 连续纤维增强热塑性树脂基复合材料自动铺放原位成型技术的航空发展现状[J]. 复合材料学报, 2019, 36 (4): 784- 794
CHEN Ji-ping, LI Yan, LIU Wei-ping, et al Development of AFP in-situ consolidation technology on continuous fiber reinforced thermoplastic matrix composites in aviation[J]. Acta Materiae Compositae Sinica, 2019, 36 (4): 784- 794
[17]   GROGAN D, BRÁDAIGH C, MCGARRY J, et al Damage and permeability in tape-laid thermoplastic composite cryogenic tanks[J]. Composites Part A: Applied Science and Manufacturing, 2015, 78: 390- 402
doi: 10.1016/j.compositesa.2015.08.037
[18]   邵忠喜, 韩振宇, 李玥华, 等 纤维铺放设备中丝束增减控制方法及其比较[J]. 航空学报, 2011, 32 (1): 164- 171
SHAO Zhong-xi, HAN Zhen-yu, LI Yue-hua, et al Comparative study of tows Increase or decrease methods for fiber placement machine[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32 (1): 164- 171
[19]   QURESHI Z, SWAIT T, SCAIFE R, et al In situ consolidation of thermoplastic prepreg tape using automated tape placement technology: Potential and possibilities[J]. Composites Part B: Engineering, 2014, 66: 255- 267
doi: 10.1016/j.compositesb.2014.05.025
[20]   GAO Y, ZHI Q, Lu L, et al Ultrasonic welding of carbon fiber reinforced nylon 66 composite without energy director[J]. Journal of Manufacturing Science and Engineering, 2018, 140 (5): 051009
doi: 10.1115/1.4039113
[21]   STOKESGRIFFIN C, COMPSTON P An inverse model for optimisation of laser heat flux distributions in an automated laser tape placement process for carbon-fibre/PEEK[J]. Composites Part A: Applied Science and Manufacturing, 2016, 88: 190- 197
doi: 10.1016/j.compositesa.2016.05.034
[22]   GONÇALVES L, DUARTE F, MARTINS C, et al Laser welding of thermoplastics: an overview on lasers, materials, processes and quality[J]. Infrared Physics and Technology, 2021, 119: 103931
[23]   ANASTASIOS D, DAVID W, MICHAEL E, et al Heat transfer modelling of flashlamp heating for automated tape placement of thermoplastic composites[J]. Composites Part A: Applied Science and Manufacturing, 2021, 145: 106381
doi: 10.1016/j.compositesa.2021.106381
[24]   韩振宇, 李玥华, 富宏亚, 等 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012, 4 (2): 91- 96
HAN Zhen-yu, LI Yue-hua, FU Hong-ya, et al Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012, 4 (2): 91- 96
doi: 10.3969/j.issn.1001-4381.2012.02.020
[25]   BEYELER E, PHILLIPS W, GÜÇERI S Experimental investigation of laser-assisted thermoplastic tape consolidation[J]. Journal of Thermoplastic Composite Materials, 1988, 1 (1): 107- 121
doi: 10.1177/089270578800100109
[26]   KHAN M, MITSCHANG P, SCHLEDJEWSKI R Parametric study on processing parameters and resulting part quality through thermoplastic tape placement process[J]. Journal of Composite Materials, 2013, 47 (4): 485- 499
doi: 10.1177/0021998312441810
[27]   KOLLMANNSBERGER A, LICHTINGER R, HOHENESTER F, et al Numerical analysis of the temperature profile during the laser-assisted automated fiber placement of CFRP tapes with thermoplastic matrix[J]. Journal of Thermoplastic Composite Materials, 2018, 31 (12): 1563- 1586
doi: 10.1177/0892705717738304
[28]   MARTIN M, RODRIGUEZLENCE F, GÜEMES A, et al On the determination of thermal degradation effects and detection techniques for thermoplastic composites obtained by automatic lamination[J]. Composites Part A: Applied Science and Manufacturing, 2018, 111: 23- 32
doi: 10.1016/j.compositesa.2018.05.006
[29]   肖军, 李勇, 李建龙 自动铺放技术在大型飞机复合材料结构件制造中的应用[J]. 航空制造技术, 2008, 1: 50- 53
XIAO Jun, LI Yong, LI Jian-long Application of automatic placement technology in the manufacture of large aircraft composite structural parts[J]. Aeronautical Manufacturing Technology, 2008, 1: 50- 53
doi: 10.3969/j.issn.1671-833X.2008.01.009
[30]   宋清华, 肖军, 文立伟, 等 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46 (1): 83- 91
SONG Qing-hua, XIAO Jun, WENG Li-wei, et al Temperature field during automated fiber placement for thermoplastic composite[J]. Journal of Materials Engineering, 2018, 46 (1): 83- 91
doi: 10.11868/j.issn.1001-4381.2016.000147
[31]   ZHAO P, SHIRINZADEH B, SHI Y, et al Multi-pass layup process for thermoplastic composites using robotic fiber placement[J]. Robotics and Computer Integrated Manufacturing, 2018, 49: 277- 284
doi: 10.1016/j.rcim.2017.08.005
[32]   赵志远. 基于机器人的热塑性复合材料铺放装备及工艺仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2020: 38-48.
ZHAO Zhi-yuan. Research on robot-based placement equipment and progress simulation of thermoplastic composite[D]. Harbin: Harbin Institute of Technology, 2020: 38-48.
[1] Li-ning YANG,Yong-di ZHANG,Jin-ye WANG,Hong-jie CHANG,Guang YANG. Additive manufacturing process of continuous carbon fiber reinforced metal matrix composites[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(11): 2084-2090.
[2] LUAN Cong-cong, YAO Xin-hua, LIU Cheng-zhe, FU Jian-zhong. Carbon fiber-thermoplastic composite 3D printing technology and its self-monitoring[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(9): 1808-1814.
[3] ZHUGE Ping, DING Yong, HOU Su-wei, QIANG Shi-zhong.
Optimization design and fatigue test of new CFRP tendon anchor assembly
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1822-1827.
[4] CHEN Yue-chao, ZHOU Xiao-jun, YANG Chen-long, LI-Zhao.
Microstructure and feature of pores for corner of L-shape CFRP components
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1775-1880.
[5] WANG Bao-jun, BI Liu-xin, CHEN Liang-liang, YANG Ping-xi, ZHU Chang-sheng. Strength analysis of a surface mounted high speed permanent magnetic machine rotor with carbon fiber bandage[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(12): 2101-2110.
[6] YANG Jian-tao, PAN Hua, CHEN Jie, SU Qing-fa, WANG Da-hui, SHI Yao. Two-stage system of non-thermal plasma and adsorption for
decomposition of hydrogen sulfide
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2411-2415.