Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 988-996    DOI: 10.3785/j.issn.1008-973X.2023.05.015
    
Optimal design of long span steel-concrete composite floor system
Yi-fan WU1,2(),Wen-hao PAN1,3,4,*(),Yao-zhi LUO1,4
1. Space Structure Research Center of Zhejiang University, Hangzhou 310058, China
2. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
3. Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China
4. Key Laboratory of Space Structures of Zhejiang Province, Hangzhou 310058, China
Download: HTML     PDF(1380KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An optimal design problem of long span steel-concrete composite floor system was investigated based on important parameters to aim at the economical and applicable conditions and optimizing orientations of long span steel-concrete composite floor. The objective function was set as economical equivalent steel consumption, and the variables contained eight parameters including dimensions of the steel section, intermediate distance between steel sections and thickness of concrete slab. The objective function was constrained to the plastic theory, standards and construction experience. The generalized reduced gradient method (GRG) was used to generate optimal sections with minimum economical equivalent steel consumption under different spans and live loads. According to the optimization results, the composite floor within a span of 60 m and a variable load of 6 kN/m2 could efficiently facilitate the composite effect of composite structure and has good economic benefits. As for super-long span composite floor when the traditional I-section floor system is not economically suitable, the composite floor with corrugated web is recommended for improving the bearing efficiency of steel web. A new cable-supported composite floor system was proposed based on the cable-supported beam for its high efficiency in mechanism.



Key wordssteel-concrete floor system      optimal design      long span structure      economical equivalent steel consumption      cable-supported composite floor system      generalized reduced gradient (GRG)     
Received: 29 April 2022      Published: 09 May 2023
CLC:  TU 398.9  
Fund:  浙江省基础公益研究计划资助项目(LQ21E080020);国家自然科学基金资助项目(52108181);浙江大学平衡建筑研究中心科研项目(2021-KYY-512102-0016)
Corresponding Authors: Wen-hao PAN     E-mail: wuyifann@zju.edu.cn;pan_wh@zju.edu.cn
Cite this article:

Yi-fan WU,Wen-hao PAN,Yao-zhi LUO. Optimal design of long span steel-concrete composite floor system. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 988-996.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.015     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/988


大跨钢-混凝土组合楼盖的优化设计

针对大跨度钢-混凝土组合楼盖的经济适用工况和优化方向,以重要参数为基础,对大跨钢-混凝土组合楼盖的优化设计问题进行研究. 在优化分析时,以组合楼盖的经济等效用钢量为目标函数,变量包括钢梁截面尺寸、钢梁间距和混凝土翼板厚度等8个参数,约束条件服从塑性设计理论、规范规定和工程经验. 在不同跨度和可变荷载下,利用广义简约梯度(GRG)算法求解获得经济等效用钢量最小的组合梁截面. 根据优化结果,跨度小于60 m、可变荷载小于6 kN/m2的组合楼盖能够有效地发挥组合结构的组合作用,具有较好的经济效益. 对于传统组合楼盖经济适用性不强的超大跨楼盖,从提高腹板承载效率的角度,可以使用波形钢腹板组合楼盖体系,考虑张弦梁受力高效的优点提出新型弦支组合楼盖体系.


关键词: 钢-混凝土组合楼盖,  优化设计,  大跨结构,  经济等效用钢量,  弦支组合楼盖,  广义简约梯度法 
Fig.1 Optimization model of composite floor system
Fig.2 Cross-section of composite beam for calculation
Fig.3 Graphic diagram of economical equivalent steel consumption of composite floor
Fig.4 Isolines of economical equivalent steel consumption of composite floor
Fig.5 Variations and trends of economical equivalent steel consumption of composite floor
Fig.6 Ratios between area of optimized cross-section’s steel web and whole steel section
Fig.7 Positions of plastic neutral axis of optimized composite cross-section
Fig.8 Proportions of imposed loads of composite floor
Fig.9 Composite beam with corrugated web
Fig.10 Mechanical analysis of cable-supported beam
Fig.11 Schematic illustration of cable-supported steel-concrete composite beam and its cross-section
[1]   聂建国, 孙彤, 温凌燕, 等 某会展中心大跨交叉钢-混凝土组合梁系楼盖设计[J]. 建筑结构学报, 2004, 25 (6): 123- 125
NIE Jian-guo, SUN Tong, WEN Ling-yan, et al Design of a long-span two-way steel-concrete composite beam floor system for a conference exhibition center[J]. Journal of Building Structures, 2004, 25 (6): 123- 125
doi: 10.3321/j.issn:1000-6869.2004.06.019
[2]   聂建国, 陶慕轩, 黄远, 等 钢-混凝土组合结构体系研究新进展[J]. 建筑结构学报, 2010, 31 (6): 71- 80
NIE Jian-guo, TAO Mu-xuan, HUANG Yuan, et al Research advances of steel -concrete composite structural systems[J]. Journal of Building Structures, 2010, 31 (6): 71- 80
[3]   聂建国, 卜凡民 单、双向钢-混凝土组合楼盖对比分析及设计建议[J]. 建筑结构, 2011, 41 (1): 1- 5
NIE Jian-guo, BU Fan-min Comparative analysis and design suggestion of one-way and two-way steel-concrete composite floor[J]. Building Structure, 2011, 41 (1): 1- 5
doi: 10.19701/j.jzjg.2011.01.001
[4]   NIE J G, MA X W, WEN L Y Experimental and numerical investigation of steel-concrete composite waffle slab behavior[J]. Journal of Structural Engineering, 2015, 141 (11): 04015024
doi: 10.1061/(ASCE)ST.1943-541X.0001268
[5]   GUO Y T, TAO M X, NIE X, et al Rigidity and moment distribution of steel-concrete composite waffle floor systems considering the spatial effect[J]. Engineering Structures, 2017, 143: 498- 510
doi: 10.1016/j.engstruct.2017.04.042
[6]   胡岚, 马克俭 U形钢板-混凝土高强螺栓连接组合空腹夹层板楼盖结构研究与应用[J]. 建筑结构学报, 2012, 33 (7): 61- 69
HU Lan, MA Ke-jian Research and application of U-shaped steel plate-concrete composite open-web sandwich slab structure with high strength bolts[J]. Journal of Building Structures, 2012, 33 (7): 61- 69
doi: 10.14006/j.jzjgxb.2012.07.007
[7]   尚洪坤, 马克俭, 魏艳辉, 等 大跨度装配整体式H型钢空间钢网格楼盖结构设计[J]. 建筑结构, 2018, 48 (7): 9- 13
SHANG Hong-kun, MA Ke-jian, WEI Yan-hui, et al Structural design of large-span monolithic precast H-shape steel spatial grid plate[J]. Building Structure, 2018, 48 (7): 9- 13
doi: 10.19701/j.jzjg.2018.07.002
[8]   李莉, 马克俭, 陈志鹏 正六边形多层大跨度公共建筑的混凝土蜂窝型空腹夹层板楼盖结构研究[J]. 建筑结构, 2018, 48 (11): 51- 56
LI Li, MA Ke-jian, CHEN Zhi-peng Research on concrete honeycomb open-web sandwich plate structure in hexagonal[J]. Building Structure, 2018, 48 (11): 51- 56
[9]   HATEFI H, KARAMODIN A, BAYGI S The cost optimization of a composite metal floor deck by harmony search metaheuristic algorithm[J]. Iran University of Science and Technology, 2018, 8 (1): 101- 111
[10]   ERDAL F, TUNCA O, DOĞAN E Optimum design of composite corrugated web beams using hunting search algorithm[J]. International Journal of Engineering and Applied Sciences, 2017, 9 (2): 156- 168
doi: 10.24107/ijeas.323633
[11]   KRAVANJA S, KLANŠEK U Cost optimization of composite floors[J]. High Performance Structures and Materials IV, 2008, 97: 109
[12]   SENOUCI A B, Al-ANSARI M S Cost optimization of composite beams using genetic algorithms[J]. Advances in Engineering Software, 2009, 40 (11): 1112- 1118
doi: 10.1016/j.advengsoft.2009.06.001
[13]   KAVEH A, MASOUDI M S Cost optimization of a composite floor system using ant colony system[J]. Iranian Journal of Science and Technology-Transactions of Civil Engineering, 2012, 36 (C2): 139
[14]   KOROUZHDEH T, ESKANDARI-NADDAF H, GHAROUNI-NIK M An improved ant colony model for cost optimization of composite beams[J]. Applied Artificial Intelligence, 2017, 31 (1): 44- 63
[15]   POITRAS G, LEFRANÇOIS G, CORMIER G Optimization of steel floor systems using particle swarm optimization[J]. Journal of Constructional Steel Research, 2011, 67 (8): 1225- 1231
doi: 10.1016/j.jcsr.2011.02.016
[16]   KAVEH A, AHANGARAN M Discrete cost optimization of composite floor system using social harmony search model[J]. Applied Soft Computing, 2012, 12 (1): 372- 381
doi: 10.1016/j.asoc.2011.08.035
[17]   EBID A M Optimum cross section and longitudinal profile for unstiffened fully composite steel beams[J]. Future Engineering Journal, 2021, 2 (1): 2
[18]   KRAVANJA S, ŠILIH S Optimization based comparison between composite I beams and composite trusses[J]. Journal of Constructional Steel Research, 2003, 59 (5): 609- 625
doi: 10.1016/S0143-974X(02)00045-7
[19]   KLANŠEK U, KRAVANJA S Cost estimation, optimization and competitiveness of different composite floor systems—part 1: self-manufacturing cost estimation of composite and steel structures[J]. Journal of Constructional Steel Research, 2006, 62 (5): 434- 448
doi: 10.1016/j.jcsr.2005.08.005
[20]   KLANŠEK U, KRAVANJA S Cost estimation, optimization and competitiveness of different composite floor systems—Part 2: optimization based competitiveness between the composite I beams, channel-section and hollow-section trusses[J]. Journal of Constructional Steel Research, 2006, 62 (5): 449- 462
doi: 10.1016/j.jcsr.2005.08.006
[21]   KRAVANJA S, ŽULA T, KLANŠEK U Multi-parametric MINLP optimization study of a composite I beam floor system[J]. Engineering Structures, 2017, 130: 316- 335
doi: 10.1016/j.engstruct.2016.09.012
[22]   GB 50017—2017, 钢结构设计标准[S]. 北京: 中华人民共和国住房和城乡建设部, 2017: 154–156.
[23]   GB 50010—2010, 混凝土结构设计规范[S]. 北京: 中华人民共和国住房和城乡建设部, 2015: 30.
[24]   中国混凝土与水泥制品协会, 商混价格周报: 全国重点城市商品混凝土市场价格周报(10月25日-10月31日)[EB/OL]. [2021-11-01]. https://www.ccpa.com.cn/site/content/7560.html.
[25]   国家统计局, 政府信息公开: 2021年10月下旬流通领域重要生产资料市场价格变动情况[EB/OL]. [2021-11-04]. http://www.stats.gov.cn/xxgk/sjfb/zxfb2020/202111/t20211105_1824118.html.
[26]   聂建国, 刘明, 叶列平. 钢-混凝土组合结构[M]. 北京: 中国建筑工业出版社, 2005: 24–46.
NIE Jian-guo, LIU Ming, YE Lie-ping. Steel-concrete composite structure [M]. Beijing: China Architecture and Building Press, 2005: 24–46.
[27]   聂建国, 陶慕轩, 吴丽丽, 等 钢-混凝土组合结构桥梁研究新进展[J]. 土木工程学报, 2012, 45 (6): 110- 122
NIE Jian-guo, TAO Mu-xuan, WU Li-li, et al Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45 (6): 110- 122
doi: 10.15951/j.tmgcxb.2012.06.003
[28]   聂建国, 樊健生 广义组合结构及其发展展望[J]. 建筑结构学报, 2006, 27 (6): 1- 8
NIE Jian-guo, FAN Jian-sheng The development and prospect of generalized composite structure[J]. Journal of Building Strutures, 2006, 27 (6): 1- 8
[29]   RUIZ-TERAN A M, APARICIO A C Two new types of bridges: under-deck cable-stayed bridges and combined cable-stayed bridges—the state of the art[J]. Canadian Journal of Civil Engineering, 2007, 34 (8): 1003- 1015
doi: 10.1139/l07-017
[30]   赵基达, 梁存之 张弦梁结构的分析与力学性能研究[J]. 建筑科学, 2015, 31 (1): 1- 6
ZHAO Ji-da, LIANG Cun-zhi Structural analysis and mechanical behavior research of beam string structures[J]. Building Science, 2015, 31 (1): 1- 6
doi: 10.13614/j.cnki.11-1962/tu.2015.01.001
[31]   SAITOH M, OKADA A The role of string in hybrid string structure[J]. Engineering Structures, 1999, 21 (8): 756- 769
doi: 10.1016/S0141-0296(98)00029-7
[32]   董石麟, 罗尧治, 赵阳. 新型空间结构分析、设计与施工[M]. 北京: 人民交通出版社, 2006: 506–531.
DONG Shi-lin, LUO Yao-zhi, ZHAO Yang. Analysis design and construction of new space structures [M]. Beijing: China Communications Press, 2006: 506–531.
[1] LIU Guo-liang, LI Xin, WU Liang, LI Zhen-yu, CHEN Guo-zhu. Analysis and design-optimization of LCC resonant converter operating under wide range input and output voltage[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(9): 1762-1770.
[2] JIANG Zhuo-hua, JIANG Huan-yu, TONG Jun-hua. Optimal design of end-effector on automatic plug seedling transplanter[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(6): 1119-1125.
[3] ZHAO Qiong, TONG Shui-guang, ZHONG Wei, GE Jun-xu. Optimal design of luffing mechanism of portal crane based on genetic algorithm and finite element analysis[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(5): 880-886.
[4] WANG Yi-fan, ZHANG Shu, CHEN Guo-zhu. FEA based optimal design of MCR-type dynamic reactive power compensation equipment[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1676-1681.
[5] CHEN Jin, QING Fei, PANG Xiao-ping. Optimal design of backhoe hydraulic excavator working device based on synthesis digging[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1654-1660.
[6] ZHU Ya-guang, JIN Bo, LI Wei, LI Shi-tong. Optimal design of a hexapod robot leg structure based on target workspace[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 770-776.
[7] ZHONG Wei, WU Yan-ling , TONG Shui-guang, GE Jun-xu, ZHOU Yi,XIE Jin-fang. Optimal design of convection heating surface of boiler
based on genetic algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(12): 2291-2296.