Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (5): 977-987    DOI: 10.3785/j.issn.1008-973X.2023.05.014
    
Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam
Zhen-yang SHE1(),Ya-le LI2,*(),Xue-hong LI1,Xiu-li XU1,Jing-kai LIU1
1. School of Civil Engineering, Nanjing Tech University, Nanjing 211816, China
2. School of Building Engineering, Jiangsu Open University, Nanjing 210036, China
Download: HTML     PDF(6421KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The reinforced concrete double-limb thin-walled high piers (RCDTP) and the rocking self-centering double-limb thin-walled high piers (RSDTP) with energy-consuming tie beams were designed and fabricated to explore the swing self-reset system applicable to the double-leg thin-walled high piers of continuous rigid frame bridges in mountainous areas. Quasistatic tests were conducted to study the failure patterns, hysteretic characteristics, skeleton curves, energy dissipation capacity, ductility, residual displacement. Compared with those of the RCDTP piers, the results showed that the setting of energy-consuming tie beam and the design of rocking system could significantly improve the seismic performance and reduce the damage. The ultimate bearing capacity, ductility and energy dissipation capacity of RSDTP piers increased by 51.4%, 12.3% and 42.0% respectively. The residual displacement of the RSDTP piers was reduced by 24%. The prestressing tendons provide the self-centering capacity, effectively control residual displacement and guarantee the post-earthquake repair capacity.



Key wordsaseismic performance      quasi-static test      rocking self-centering bridge column      energy-consuming tie beam      double-limb thin-walled high pier     
Received: 02 August 2022      Published: 09 May 2023
CLC:  U 448.23  
  U 443.22  
Fund:  国家自然科学基金资助项目(52008187);2021年江苏高校“青蓝工程”资助项目
Corresponding Authors: Ya-le LI     E-mail: yyzqshezhenyang@163.com;liyl@jsou.edu.cn
Cite this article:

Zhen-yang SHE,Ya-le LI,Xue-hong LI,Xiu-li XU,Jing-kai LIU. Investigation on seismic performance of thin-walled high piers with rocking self-centering double-limb with energy-consuming tie beam. Journal of ZheJiang University (Engineering Science), 2023, 57(5): 977-987.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.05.014     OR     https://www.zjujournals.com/eng/Y2023/V57/I5/977


带耗能系梁的摇摆自复位双肢薄壁高墩抗震性能研究

探索适用于山区连续刚构桥双肢薄壁高墩的摇摆自复位体系,设计和制作了混凝土双肢薄壁高墩(RCDTP)和带耗能系梁的摇摆自复位双肢薄壁高墩(RSDTP)构件. 开展双肢薄壁墩的拟静力试验,研究破坏形态、滞回特性、骨架曲线、耗能能力、延性和残余位移等. 与RCDTP墩进行比较,结果表明耗能系梁的设置和摇摆体系的设计能够显著提高墩柱抗震性能、减轻损伤程度. RSDTP墩极限承载力、延性系数、耗能能力分别提高了51.4%、12.31%、42%,RSDTP墩的残余位移降低了24%. 预应力钢筋的设置为桥墩提供了自复位能力,有效地控制桥墩的震后残余位移,保障了双肢高墩的震后可恢复性.


关键词: 抗震性能,  拟静力试验,  摇摆自复位桥墩,  耗能系梁,  薄壁双肢高墩 
Fig.1 Cross section and elevations view of specimens 0 and 1
Fig.2 Schematic diagrams of energy-consuming tie beam damper
Fig.3 Quasi-static test loading and device schematic diagram
Fig.4 Measuring points and measurement of compression depth schematic diagram
Fig.5 Failure modes of specimen 0 under loading displacement of 110 mm
Fig.6 Failure modes of specimen 1 under loading displacement of 110 mm
Fig.7 Hysteretic curves of specimen 0 and 1
Fig.8 Skeleton curves of specimen 0 and 1
Fig.9 Equivalent viscons damping coefficient-displacement ductility change cure for specimens 0 and 1
Fig.10 Normalized cumulative hysteresis energy dissipation coefficient-displacement ductulity change curve for specimens 0 and 1
Fig.11 Residual displacement-horizontal displacement curve of specimen 0 and 1
Fig.12 Schematic diagram of bending moment-curvature relationship of specimen 0 and 1
Fig.13 Schematic of analytical model of specimen prestress increment
Fig.14 Curves of prestress increment in literature
Fig.15 Curves of height of compression zone with lateral displacement at column top
Fig.16 Comparison curve of prestressed increment after formula correction
Fig.17 Comparison of experimental-numerical hysteresis curves with skeleton curves
Fig.18 Comparison of hysteresis curve and skeleton curve under different parameters
[1]   WEN J N, HAN Q, DU X L Shaking table tests of bridge model with friction sliding bearings under bidirectional earthquake excitations[J]. Structure and Infrastructure Engineering, 2019, 15 (9): 1264- 1278
doi: 10.1080/15732479.2019.1618350
[2]   王东升, 童磊, 王荣霞, 等. 大跨PC连续刚构桥抗震研究进展综述[J/OL]. 西南交通大学学报, 2022: 1-16. http://kns.cnki.net/kcms/detail/51.1277.U.20211020.0828.002.html.
WANG Dong-sheng, TONG lei, WANG Rong-xia, et al. A review of advances on seismic research in large-span pc continuous beam rigid-frame bridges [J/OL]. Journal of Southwest Jiaotong University, 2022: 1-16. http://kns.cnki.net/kcms/detail/51.1277.U.20211020.0828.002.html.
[3]   MACKIE K, STOJADINOVIC B. Residual displacement and post-earthquake capacity of highway bridges [C]// Proceedings of the Thirteenth World Conference on Earthquake Engineering. Vancouver: BC, 2004: 1-16.
[4]   VASSILIOU M F, MAKRIS N Dynamics of the vertically restrained rocking column[J]. Journal of Engineering Mechanics, 2015, 141 (12): 1- 10
[5]   BU Z Y, OU Y C, SONG J W, et al Hysteretic mod-eling of unbonded posttensioned precast segmental brid-ge columns with circular section based on cyclic loadi-ng test[J]. Journal of Bridge Engineering, 2016, 21 (6): 1- 14
[6]   韦性涵. 自复位隔震高墩模型拟静力试验研究[D]. 兰州: 兰州交通大学, 2018: 10.
WEI Xing-han. Pseudo-static test of high pier model with self-centering isolation [D]. Lanzhou: Lanzhou Jiaotong University, 2018: 10.
[7]   PALERMO A, PAMPANIN S, MARRIOTT D Design, modeling and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J]. Journal of Structural Engineering, 2007, 133 (11): 1648- 1661
doi: 10.1061/(ASCE)0733-9445(2007)133:11(1648)
[8]   MARRIOTT D, PAMPANIN S, PALERMO A Quasistatic and pseudo dynamic testing of unbonded posttensioned rocking bridge piers with external replaceable dissipaters[J]. Earthquake Engineering and Structural Dynamics, 2009, 38 (3): 331- 354
doi: 10.1002/eqe.857
[9]   ROH H, OU Y C, KIM J, et al Effect of yielding level and post-yielding sstiffness ratio of ED bars on seismic performance of PT rocking bridge piers[J]. Engineering Structures, 2014, 81 (15): 454- 463
[10]   孙治国, 谷明洋, 司炳君, 等 外置角钢摇摆-自复位双柱墩抗震性能分析[J]. 中国公路学报, 2017, 30 (12): 40- 49
SUN Zhi-guo, GU Ming-yang, SI Bing-jun, et al Seismic behavior analyses of rocking self-centering double column bridge bents using external angles[J]. China Journal of Highway and Transport, 2017, 30 (12): 40- 49
doi: 10.3969/j.issn.1001-7372.2017.12.005
[11]   韩强, 董慧慧, 王利辉, 等 基于可更换构件的可恢复功能桥梁防震结构研究综述[J]. 中国公路学报, 2021, 34 (9): 215- 230
HAN Qiang, DONG Hui-hui, WANG Li-hui et al. Re-view of seismic resilient bridge structures with replaceable members[J]. China Journal of Highway and Transport, 2021, 34 (9): 215- 230
doi: 10.3969/j.issn.1001-7372.2021.09.018
[12]   HAN Q, JIA Z L, XU K, et al Hysteretic behavior investigation of self-centering double-column rocking piers for seismic resilience[J]. Engineering Structures, 2019, 188 (1): 218- 232
[13]   SAIIDI M S, WANG H Exploratory study of seismic response of concrete columns with shape memory alloys reinforcement[J]. ACI Materials Journal, 2006, 103 (3): 436
[14]   TAZARV M, SAIIDI M S Low-damage precast columns for accelerated bridge construction in high seismic zones[J]. Journal of Bridge Engineering, 2016, 21 (3): 1- 13
[15]   VARELA S A bridge column with superelastic NiTi SMA and replaceable rubber hinge for earthquake damage mitigation[J]. Smart Materials and Structures, 2016, 25 (7): 1- 18
[16]   韩强, 贾振雷, 何维利, 等 自复位双柱式摇摆桥梁抗震设计方法及工程应用[J]. 中国公路学报, 2017, 30 (12): 169- 177
HAN Qiang, JIA Zhen-lei, HE Wei-li, et al Seismic design method and its engineering application of self-centering doublecolumn rocking bridge[J]. China Journal of Highway and Transport, 2017, 30 (12): 169- 177
doi: 10.3969/j.issn.1001-7372.2017.12.018
[17]   魏博, 贾俊峰, 欧进萍, 等 外置耗能器对自复位预制RC桥墩抗震性能的影响研究[J]. 中国公路学报, 2021, 34 (2): 220- 229
WEI Bo, JIA Jun-feng, OU Jin-ping, et al Study on the effect of exterior dampers on the seismic performance of self-centering precast bridge columns[J]. China Journal of Highway and Transport, 2021, 34 (2): 220- 229
doi: 10.3969/j.issn.1001-7372.2021.02.012
[18]   贾俊峰, 魏博, 欧进萍, 等 外置可更换耗能器的预制拼装自复位桥墩抗震性能试验研究[J]. 振动与冲击, 2021, 40 (5): 154- 162
JIA Jun-feng, WEI Bo, OU Jin-ping, et al Tests for seismic performance of prefabricated self-centering bridge piers with external replaceable energy dissipator[J]. Journal of Vibration and Shock, 2021, 40 (5): 154- 162
doi: 10.13465/j.cnki.jvs.2021.05.021
[19]   石岩, 钟正午, 秦洪果, 等 装配铅挤压阻尼器的摇摆-自复位双柱墩抗震性能及设计方法[J]. 工程力学, 2021, 38 (8): 166- 177
SHI Yan, ZHONG Zheng-wu, QIN Hong-guo, et al Seismic performance and corresponding design method of rocking self-centering bridge bents equipped with le-ad-extrusion dampers[J]. Engineering Mechanics, 2021, 38 (8): 166- 177
doi: 10.6052/j.issn.1000-4750.2020.08.0575
[20]   何铭华, 辛克贵, 郭佳, 等 自复位桥墩的内禀侧移刚度和滞回机理研究[J]. 中国铁道科学, 2012, 33 (5): 22- 28
HE Ming-hua, XIN Ke-gui, GUO Jia, et al Research on the intrinsic lateral stiffness and hysteretic mechanics of selfcentering pier[J]. China Railway Science, 2012, 33 (5): 22- 28
doi: 10.3969/j.issn.1001-4632.2012.05.04
[21]   中华人民共和国交通运输部. 公路桥梁抗震设计规范: JTG/T2231-01—2020[S]. 北京: 人民交通出版社, 2020: 84–88.
[22]   PARK R. State of the art report ductility evaluation from laboratory and analytical testing [C]// Proceedings of Ninth World Conference on Earthquake Engineering. Tokyo: Kyoto, 1988: 605-616.
[23]   PARK R Evaluation of ductility of structures and structural assemblages from laboratory testing[J]. Bulletin of the New Zealand National Society for Earthquake Engineering, 1989, 22 (3): 155- 166
doi: 10.5459/bnzsee.22.3.155-166
[24]   中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T101—2015[S]. 北京: 中国建筑工业出版社, 2015: 10–16.
[25]   SHEIKH S A, KHOURY S S Confined concrete columns with stubs[J]. ACI Structural Journal, 1993, 90 (4): 414- 431
[26]   Japan Road Association, Design specifications of highway bridges. partⅤ: seismic design [S]. Tokyo: Maruzen Publishing Company, 1996: 124–129.
[27]   MOHAMED A EIGAWADY, AHMAD SHA'LAN. Seismic behavior of self-centering precast segmental bridge bents[J]. Journal of Bridge Engineering, 2011, 16 (3): 328- 339
doi: 10.1061/(ASCE)BE.1943-5592.0000174
[28]   赵建瑜. 自复位预制节段拼装桥墩抗震性能研究[D]. 北京: 北京工业大学, 2018: 27.
ZHAO Jian-yu. Seismic performance of self-centering segmental precast bridge columns [D]. Beijing: Beijing University of Technology, 2018: 27.
[29]   Open system for earthquake engineering simulation[EB/OL]. [2007-2019]. http: //opensees. berkeley. edu.
[30]   孙治国, 赵泰儀, 石岩, 等 摇摆-自复位桥墩抗震性能数值建模方法研究[J]. 应用基础与工程科学学报, 2019, 27 (6): 1357- 1369
SUN Zhi-guo, ZHAO Tai-yi, SHI Yan, et al Research on numerical modeling method for rocking self-centering bridge piers[J]. Journal of Basic Science and Engineering, 2019, 27 (6): 1357- 1369
doi: 10.16058/j.issn.1005-0930.2019.06.015
[31]   司炳君, 谷明洋, 孙治国, 等 近断层地震动下摇摆-自复位桥墩地震反应分析[J]. 工程力学, 2017, 34 (10): 87- 97
SI Bing-jun, Gu Ming-yang, SUN Zhi-guo, et al Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motion[J]. Engineering Mechanics, 2017, 34 (10): 87- 97
doi: 10.6052/j.issn.1000-4750.2016.05.0386
[1] Wei WANG,Hao-tian ZHAO,Chao-chao QUAN,Hong-lai SONG,Yu LI,Yi-xiang ZHOU. Shear bearing capacity of vertical corrugated steel plate shear wall with replaceable toe[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(8): 1407-1418.
[2] Shui-guang TONG,Jia-zhi MIAO,Zhe-ming TONG,Shun HE,Shu-feng XIANG,Xiang-hui SHUAI. Finite element analysis and optimization for static and dynamic characteristics of diesel forklift frame[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1637-1646.
[3] Wen-liang QIU,Ha-si HU,Tian TIAN,Zhe ZHANG. Structural parameters affecting seismic behavior of concrete-filled steel tube composite piers[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 889-898.
[4] HAN Dong, BU Xin, WANG Xin wu, JIANG Cang ru. Experiment on seismic performance of spatial beam to corner column connection with T-stub[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 287-296.