Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 842-854    DOI: 10.3785/j.issn.1008-973X.2023.04.022
    
Experimental study on flexural performance of composite slab with groove splicing joint
Tong XIAO1(),Ming-shan ZHANG2,3,*(),Ben-yue LI2,3,Quan-biao XU2,3,Shun-feng GONG1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Architectural Design and Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
3. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(2845KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A new composite slab with groove splicing joint was developed in order to improve the efficiency of factory production, transportation and lifting, as well as on-site construction of composite slab components. The flexural performance of cast-in-place slabs, composite slabs with post-cast strip and composite slabs with groove splicing joint was comparatively analyzed in terms of the cracking moment, flexural capacity, crack development and distribution, deformation ductility and failure characteristics through full-size flexural test and numerical simulation on 8 composite slab specimens. Results show that the flexural capacity of composite slabs with groove splicing joint is slightly lower than that of cast-in-place slabs and composite slabs with post-cast strip. The composite slabs using the D-type groove splicing joint have better flexural performance compared with the C-type connection joint. The flexural capacity of the composite slabs with groove splicing joint was significantly improved by increasing the length of the groove. The numerical simulation results of the established finite element model accorded well with the experimental results, which can reasonably simulate the flexural performance of composite slabs. The reasonable design of the composite slabs with groove splicing joint was clarified through the analysis of the parameters influencing the flexural performance of the composite slabs with D-type groove splicing joint.



Key wordscomposite slab      groove splicing joint      flexural performance      failure characteristic     
Received: 29 June 2022      Published: 21 April 2023
CLC:  TU 111  
Fund:  浙江省重点研发计划资助项目(2018C03033-1);住房和城乡建设部科技资助项目(2021-k-052)
Corresponding Authors: Ming-shan ZHANG     E-mail: 904778842@qq.com;zhangms@zuadr.com
Cite this article:

Tong XIAO,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on flexural performance of composite slab with groove splicing joint. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 842-854.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.022     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/842


叠合板板侧凹槽拼缝连接受弯性能试验研究

为了提高叠合板构件的工厂化制作、运输吊装及现场施工效率,研发了新型凹槽拼缝连接叠合板. 通过对8个叠合板试件进行足尺受弯性能试验和数值模拟分析,对比研究整体现浇板、后浇带连接叠合板以及凹槽拼缝连接叠合板的开裂弯矩、极限承载力、裂缝开展及分布、变形延性和破坏特征等受弯性能. 结果表明,凹槽拼缝连接叠合板的受弯承载力略低于整体现浇板及后浇带连接叠合板. 相较于C型连接,D型连接凹槽拼缝叠合板的受弯性能更好. 随着凹槽长度的增加,凹槽拼缝连接叠合板的承载能力有显著提高. 建立的有限元模型数值模拟结果与试验结果吻合较好,可以较合理地模拟叠合板的受弯性能. 通过对影响叠合板D型凹槽拼缝连接受弯性能的参数分析,明确了叠合板凹槽拼缝连接的合理设计.


关键词: 叠合板,  凹槽拼缝连接,  受弯性能,  破坏特征 
Fig.1 Design details of slab specimens
编号 试件类型 配筋 L/mm W/mm 钢筋连接方式 L1/mm
A 整体现浇 ?10 mm@200 mm 3 100 1 000
B 后浇带连接 ?10 mm@200 mm 3 100 1 000
C1 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 100
C2 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 200
C3 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 C型连接 300
D1 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 100
D2 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 200
D3 凹槽拼缝 ?10 mm@200 mm 3 100 1 000 D型连接 300
Tab.1 Geometric dimensions and reinforcements of slab specimens
Fig.2 Details of groove splicing joint
Fig.3 Stress-strain curves of reinforcing bar
Fig.4 Loading device diagram of flexural test for composite slab specimen
Fig.5 Arrangement of strain measuring point
Fig.6 Failure pattern of slab specimens
Fig.7 Crack distribution of composite slab specimen
Fig.8 Load-mid-span deflection curve of specimen
试件
编号
$M_{{\text{cr}}}^{\text{c}}$/
(kN·m)
$M_{{\text{cr}}}^{\text{e}}$/
(kN·m)
$M_{{\text{cr}}}^{\text{e}}$/ $M_{{\text{cr}}}^{\text{c}}$ $M_{\text{u}}^{\text{c}}$/
(kN·m)
$M_{\text{u}}^{\text{e}}$/
(kN·m)
$M_{\text{u}}^{\text{e}}$/ $M_{\text{u}}^{\text{c}}$ $f_{\text{u}}^{\text{e}}$/
mm
A 7.1 7.6 1.07 14.5 25.6 1.76 241.39
B 7.1 7.2 1.01 14.5 26.8 1.85 242.73
C1 7.2 4.8 0.67 12.8 11.2 0.87 26.49
C2 7.2 7.2 1.00 12.8 21.2 1.65 75.02
C3 7.2 7.2 1.00 12.8 21.6 1.69 80.46
D1 7.2 6.0 0.83 12.8 12.0 0.94 32.74
D2 7.2 8.0 1.11 12.8 21.6 1.69 99.36
D3 7.2 8.4 1.17 12.8 23.2 1.81 119.56
Tab.2 Experimental results of flexural capacity for specimen
Fig.9 Load-joint crack width curves of precast slabs
Fig.10 Load-strain curves of reinforcing bar
Fig.11 Uniaxial compression stress-strain curve of concrete
Fig.12 Uniaxial tension stress-strain curve of concrete
Fig.13 Tensile stress-strain curve of reinforcing bar
Fig.14 Finite element model of composite slab specimen
钢筋 Es/GPa fy/MPa εy k1 k2 k3
?10 mm 197.6 430.1 0.0022 63.6 89.5 1.59
Tab.3 Parameter of reinforcing bar model
Fig.15 Comparison of load-mid-span deflection curve of specimen
试件规格 $M_{{\text{cr}}}^{\text{n}}$/(kN·m) $M_{{\text{cr}}}^{\text{e}}$/(kN·m) $M_{{\text{cr}}}^{\text{e}}$/ $M_{{\text{cr}}}^{\text{n}}$ $M_{\text{u}}^{\text{n}}$/(kN·m) $M_{\text{u}}^{\text{e}}$/(kN·m) $M_{\text{u}}^{\text{e}}$/ $M_{\text{u}}^{\text{n}}$ $f_{\text{u}}^{\text{n}}$/mm $f_{\text{u}}^{\text{e}}$/mm $f_{\text{u}}^{\text{e}}$/ $f_{\text{u}}^{\text{n}}$
A 8.0 7.6 0.95 26.4 25.6 0.97 248.36 241.39 0.97
B 7.6 7.2 0.95 26.4 26.8 1.02 264.53 242.73 0.92
C1 4.4 4.8 1.09 10.5 11.2 1.07 26.81 26.49 0.98
C2 6.9 7.2 1.05 20.8 21.2 1.02 77.05 75.02 0.97
C3 6.9 7.2 1.05 21.6 21.6 1.00 80.36 80.46 1.00
D1 6.0 6.0 1.00 11.2 12.0 1.07 30.33 32.74 1.08
D2 7.6 8.0 1.05 20.6 21.6 1.05 98.18 99.36 1.01
D3 7.6 8.4 1.10 22.3 23.2 1.04 120.12 119.56 0.99
Tab.4 Numerical simulation results of composite slab specimen
Fig.16 Crack distribution of concrete in specimen
Fig.17 Mises stress nephogram of bottom reinforcement
Fig.18 Load-mid-span deflection curves of composite slabs with different connecting reinforcement ratios
Fig.19 Load-mid-span deflection curves of composite slabs with different thicknesses of laminated layer
Fig.20 Load-mid-span deflection curves of composite slabs with different groove depths
[1]   赵顺波. 混凝土叠合结构设计原理与应用[M]. 北京: 中国水利水电出版社, 2001.
[2]   吴方伯, 刘彪, 李钧, 等 新型叠合板拼缝构造措施的试验研究及有限元分析[J]. 工业建筑, 2015, 45 (2): 50- 56
WU Fang-bo, LIU Biao, LI Jun, et al Experimental study and finite element analysis of the new type of composite slab joint structure measures[J]. Industrial Construction, 2015, 45 (2): 50- 56
doi: 10.13204/j.gyjz201502012
[3]   徐天爽, 徐有邻 双向叠合板拼缝传力性能的试验研究[J]. 建筑科学, 2003, (6): 11- 14
XU Tian-shuang, XU You-lin Experimental study on joint force transmission performance of two-way composite plate[J]. Building Science, 2003, (6): 11- 14
doi: 10.3969/j.issn.1002-8528.2003.06.004
[4]   丁克伟, 陈东, 刘运林, 等 一种新型拼缝结构的叠合板受力机理及试验研究[J]. 土木工程学报, 2015, 48 (10): 64- 69
DING Ke-wei, CHEN Dong, LIU Yun-lin, et al Mechanical mechanism and experimental study of composite plate with a new type of joint structure[J]. China Civil Engineering Journal, 2015, 48 (10): 64- 69
doi: 10.15951/j.tmgcxb.2015.10.009
[5]   崔士起, 刘传卿, 刘文政, 等 分离式接缝叠合板垂直接缝方向抗弯刚度的试验及计算方法研究[J]. 建筑结构学报, 2018, 39 (9): 75- 84
CUI Shi-qi, LIU Chuan-qing, LIU Wen-zheng, et al Research on test and calculation method of bending stiffness of vertical joint of separated joint composite plate[J]. Journal of Building Structures, 2018, 39 (9): 75- 84
doi: 10.14006/j.jzjgxb.2018.09.009
[6]   余泳涛, 赵勇, 高志强 单缝密拼钢筋混凝土叠合板受弯性能试验研究[J]. 建筑结构学报, 2019, 40 (4): 29- 37
YU Yong-tao, ZHAO Yong, GAO Zhi-qiang Experimental study on flexural behavior of single joint close fitting reinforced concrete composite slab[J]. Journal of Building Structures, 2019, 40 (4): 29- 37
doi: 10.14006/j.jzjgxb.2019.04.003
[7]   STEHLE J, KANELLOPOULOS A, KARIHALOO B L Performance of joints in reinforced concrete slabs for two-way spanning action[J]. Proceedings of the ICE-Structures and Buildings, 2011, 164 (3): 197- 209
[8]   装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 中国建筑工业出版社, 2014.
[9]   混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.
[10]   混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012.
[11]   VELASCO R V. Self-consolidating concretes reinforced with high volumetrics fractions of steel fibers: rheological, physics, mechanics and thermal properties [D]. Rio de Janeiro: Federal University of Rio de Janeiro, 2008.
[12]   WEE T H, CHIN M S, MANSUR M A Stress-strain relationship of high-strength concrete in compression[J]. Journal of Materials in Civil Engineering, 1996, 8 (2): 70- 76
doi: 10.1061/(ASCE)0899-1561(1996)8:2(70)
[13]   ESMAEILY A, XIAO Y Behavior of reinforced concrete columns under variable axial loads: analysis[J]. ACI Structural Journal, 2005, 102 (5): 736- 744
[14]   AN C, CASTELLO X, DUAN M L, et al Ultimate strength behavior of sandwich pipes filled with steel fiber reinforced concrete[J]. Ocean Engineering, 2012, 55: 125- 135
doi: 10.1016/j.oceaneng.2012.07.033
[15]   GENIKOMSOU A S, POLAK M A Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS[J]. Engineering Structures, 2015, 98: 38- 48
doi: 10.1016/j.engstruct.2015.04.016
[1] Jun LUO,Xu-dong SHAO,Jun-hui CAO,Wei FAN,Bi-da PEI. Orthogonal test and calculation method of cracking load of steel-ultra-high performance concrete composite specimen[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 909-920.
[2] Bin LUO,Wei HUANG,Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN. Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2185-2196.
[3] ZHANG Zheng-xuan, CHEN Gang, XU Quan-biao, GONG Shun-feng, XIAO Zhi-bin, LIU Cheng-bin. Experimental study on flexural and shear performance of prestressed steel strand ultra-high strength concrete H-type piles[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 31-39.
[4] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[5] XU Quan-biao, CHEN Gang, HE Jing-feng, GONG Shun-feng, XIAO Zhi-bin. Flexural performance experiment of connection joint for composite reinforcement concrete prefabricated square piles[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1300-1308.
[6] XU Quan biao, CHEN Gang, HE Jing feng, GONG Shun feng. Flexural performance experiment of composite reinforcement[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(9): 1768-1776.
[7] ZHANG Rui, XIAO Na. Research on dynamic failure of suspenddome structures under severe earthquakes[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(6): 1185-1190.