Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
Civil and Transportation Engineering     
Flexural performance experiment of composite reinforcement
XU Quan biao, CHEN Gang, HE Jing feng, GONG Shun feng
1. The Architectural Design and Research Institute of Zhejiang University Co. Ltd, Hangzhou 310028, China;
2. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
Download:   PDF(2476KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The composite reinforcement concrete prefabricated square piles were innovatively developed to improve the anti-cracking performance of common concrete prefabricated square piles; the horizontal load-carrying capacity and deformation ductility of the prestressed concrete pipe piles. The experiments of flexural performance of nine square pile specimens for three kinds of commonly-used pile types were conducted to investigate the differences between prestressed and non-prestressed concrete prefabricated square piles on aspects of anti-cracking performance, flexural capacity, deformation ductility and damage characteristics. Results show that the applied prestress can evidently improve the anti-cracking capacity of square piles, and the crack distribution of the pile concrete is more uniform and its distribution range is smaller. Simultaneously, the number of crack in pile body is much less and the cracking bending moment becomes larger. In addition, the experimental results of ultimate flexural bearing capacity for square pile specimens are far greater than the calculated values from the specification formula. As to the prestressed square pile specimens, the ultimate flexural bearing capacity reduces 15% or so and the deformation ductility decreases approximately 30% in comparison with the non-prestressed ones. The failure mode of the composite reinforcement concrete prefabricated square pile specimens can be described as follows: the non-prestressed rebar of the tension zone first starts to yield, then the prestressed steel bar is tensioned to fracture,  finally the concrete in the compression zone is crushed.



Published: 22 September 2016
CLC:  TU 473  
Cite this article:

XU Quan biao, CHEN Gang, HE Jing feng, GONG Shun feng. Flexural performance experiment of composite reinforcement. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(9): 1768-1776.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2016.09.18     OR     http://www.zjujournals.com/eng/Y2016/V50/I9/1768


复合配筋混凝土预制方桩抗弯性能试验

为解决普通混凝土预制方桩抗裂性能差、预应力混凝土管桩水平承载力低和变形延性差的现状,创新研发复合配筋混凝土预制方桩.通过3种常用桩型9根方桩试件足尺度抗弯性能试验,研究预应力和非预应力混凝土预制方桩在抗裂性能、抗弯承载力、变形延性及破坏特征等方面的差异.结果表明:施加预应力显著提高了方桩的抗裂性能,桩身混凝土裂缝分布范围小且更均匀,裂缝数目更少,开裂弯矩更大;方桩试件的极限抗弯承载力试验值远大于规范公式计算值,施加预应力比未施加预应力方桩试件的极限抗弯承载力减小15%左右,变形延性降低约30%|复合配筋混凝土预制方桩试件的破坏形式如下:受拉区非预应力钢筋首先屈服,受拉区预应力钢筋被拉断,最后受压区混凝土被压碎.

[1] 刘芙蓉. 预应力离心混凝土空心方桩的承载性能研究[D]. 武汉: 武汉大学, 2012: 56.
LIU Furong. The study of prestressed spun concrete hollow square pile on bearing capacity [D]. Wuhan:  Wuhan University, 2012: 56.
[2] 刘小乐. 预应力混凝土管桩抗弯性能研究[D]. 合肥: 合肥工业大学, 2013: 1-13.
LIU Xiaole. The research on flexural performance of prestressed concrete pipe pile[D]. Hefei: Hefei University of Technology, 2013: 1-13.
[3] 黄广龙, 颜荣华, 陆春其. 水平承载预应力混凝土管桩应用现状及展望[J]. 建筑结构, 2011, 41(增2): 341-344.
HUANG Guanglong, YAN Ronghua, LU Chunqi. Application situation and prospect of the prestressed concrete pipe pile under lateral load [J]. Building Structure, 2011, 41(Suppl.2): 341-344.
[4] 闫瑞明, 闻建军. 软土地区预应力管桩断桩事故的预防与处理[J]. 土木工程学报, 2007, 40(增): 421-424.
YAN Ruiming, WEN Jianjun. Preventing and reinforcement of PHC pile rupture in soft soil area [J]. China Civil Engineering Journal, 2007, 40(Suppl.): 421-424.
[5] 朱宝麟, 顾绍义. 某医院PHS桩工程事故分析与处理[J]. 地下空间与工程学报, 2011, 7(增1): 1502-1505.
ZHU Baolin, GU Shaoyi. Analysis and treatment of prestressed concrete pipe pile accident of a hospital [J]. Chinese Journal of Underground Space and Engineering, 2011, 7(Suppl.1): 1502-1505.
[6] 宋寅, 柳炳康, 李建宏, 等. 填芯与非填芯预应力混凝土管桩抗弯性能的比较[J]. 合肥工业大学学报:自然科学版, 2007, 30(5): 607-610.
SONG Yin, LIU Bingkang, LI Jianhong, et al. Comparison of bending moments between prestressed concrete pipe piles with the concrete core and hollow prestressed concrete pipe piles [J]. Journal of Hefei Univercity of Technology:Natural Science, 2007, 30(5): 607-610.
[7] 唐孟雄, 戚玉亮, 周治国, 等. 空心与填芯PHC管桩抗弯试验及其理论计算研究[J]. 岩土工程学报, 2013, 35(增2): 1075-1080.
TANG Mengxiong, QI Yuliang, ZHOU Zhiguo, et al. Comparative study on bending performance between hollow PHC pipe piles and PHC pipe piles with concrete core [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(Suppl.2): 1075-1080.
[8] 周安, 刘小乐, 陈凯, 等. PHC管桩抗弯承载力研究[J]. 合肥工业大学学报:自然科学版, 2014, 37(1): 91-94.
ZHOU An, LIU Xiaole, CHEN Kai, et al. Research on bending capacity of PHC pipe pile [J]. Journal of Hefei University of Technology: Natural Science, 2014, 37(1): 91-94.
[9] 张忠苗, 刘俊伟, 谢志专, 等. 新型混凝土管桩抗弯剪性能试验研究[J]. 岩土工程学报, 2011, 33(增2): 271-277.
ZHANG Zhongmiao, LIU Junwei, XIE Zhizhuan, et al. Experimental study on flexural and shearing properties of modified concrete pipe piles [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Suppl.2): 271-277.
[10] 张忠苗, 刘俊伟, 邹健, 等. 加强型预应力混凝土管桩抗弯剪性能试验研究[J]. 浙江大学学报:工学版, 2011, 45(6): 1074-1080.
ZHANG Zhongmiao, LIU Junwei, ZOU Jian, et al. Experimental study on flexural and shearing property of reinforced prestressed concrete pipe pile [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(6): 1074-1080.
[11] AKIYAMA M, ABE S, AOKI N, et al. Flexural test of precast highstrength reinforced concrete pile prestressed with unbonded bars arranged at the center of the crosssection [J]. Engineering Structures, 2012, 34: 259-270.
[12] 王树峰, 张日红. 复合配筋预应力混凝土桩桩身性能的研究[J]. 混凝土与水泥制品, 2013(8): 36-39.
WANG Shufeng, ZHANG Rihong. Investigation on pile body property of pretensioning prestressed composite reinforced concrete pile [J]. China Concrete and Cement Products, 2013(8): 36-39.
[13] 倪国泉, 杨军, 潘鹏, 等. 预应力混凝土空心方桩承台节点抗震性能试验研究[J]. 地震工程学报, 2013, 35(2): 246-251.
NI Guoquan, YANG Jun, PAN Peng, et al. Quasistatic tests of pilecap connections for the prestressed spun concrete square piles[J]. China Earthquake Engineering Journal, 2013, 35(2): 246-251.
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 预应力混凝土用钢棒:GB/T 522332005 [S]. 北京: 中国标准出版社, 2005: 14.
[15] 中华人民共和国住房和城乡建设部. 冷拔低碳钢丝应用技术规程:JGJ 192010 [S]. 北京: 中国建筑工业出版社, 2010: 37.
[16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.先张法预应力混凝土管桩:GB 134762009 [S]. 北京: 中国标准出版社, 2009: 79.
[17] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.混凝土结构试验方法标准:GB/T 501522012 [S]. 北京: 中国建筑工业出版社, 2012: 1134.
[18] 中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局.混凝土结构设计规范:GB 500102010 [S]. 北京: 中国建筑工业出版社, 2010: 34100.

[1] WU Yi qian,ZHU Yan peng. Improved calculation of settlement due to dewatering of foundation pits in phreatic aquifer[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(11): 2188-2197.
[2] YUAN Bing xiang,WU Yue dong, CHEN Rui, FENG Zhong wen, WANG Yi xian. Model tests on displacement field of internal soil induced by laterally loading pile[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(10): 2031-2036.
[3] SHAN Hua feng, XIA Tang dai, YU Feng, HU Jun hua,PAN Jin long. Buckling stability analysis on critical load of underpinning pile for excavation beneath existing building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(8): 1425-1430.
[4] HE Ben, WANG Huan, HONG Yi, WANG Li zhong, ZHAO Chang jun, QIN Xiao. Effect of vertical load on lateral behavior of single pile in clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(7): 1221-1229.
[5] QIU Zi yi, HAN Tong chun, DOU Hong qiang, LI Zhi ning. Analysis of spacing between anti slide piles considering soil arch on lateral sides and back[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(3): 551-558.
[6] YU Yan qiu, WANG Kui hua, LV Shu hui, XU Li ge. Impact of accelerometer adhesive on low strain testing curves[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1725-1730.
[7] GOU Yao-bo, YU Feng, XIA Tang-dai. Release of residual stress in existing preformed pile due to further excavation beneath  pile raft[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 969-974.
[8] LIU Nian-wu, GONG Xiao-nan, YU Feng. Vertical bearing capacity of large-diameter bored pile[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(4): 763-768.
[9] WANG Kui-hua, LI Zhen-ya, LV Shu-hui, ZHANG Peng, YU Yan-qiu. Vertical vibration characteristics of static drill rooted nodular pile and its applications[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(3): 522-530.
[10] LONG Fan, WANG Li-zhong, LI Kai, LI Ling-ling. Cause of sensitivity difference of Zhoushan clay and Wenzhou clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(2): 218-224.
[11] WANG Kui-hua, CHEN Xin, LV Shu-hui, WU Wen-bing, LI Zhen-ya. Vertical dynamic characteristics of single pile with cushion cap undergoing free vibration[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1595-1602.
[12] LIU Nian-wu1,2, GONG Xiao-nan1,2, LOU Chun-hui1,2. Deformation behavior of nearby facilities analysis induced by excavation in soft clay[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(7): 1141-1147.
[13] WU Cheng-jie, GONG Xiao-nan, YU Feng, LOU Chun-hui, LIU Nian-wu. Pile base resistance loss for excavation beneath existing high-rise building[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 671-678.
[14] HU An-feng, ZHANG Guang-jian, JIA Yu-shuai, ZHANG Xiao-dong. Application of degradation stiffness model in analysis of cumulative lateral displacement of monopile foundation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(4): 721-726.
[15] WANG Zhong-jin, XIE Xin-yu, FANG Peng-fei,LI Jin-zhu, JIN Wei-liang. Analysis for calculation of nonlinear settlement of rigid long-short compound piles[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(3): 463-470.