Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (11): 2185-2196    DOI: 10.3785/j.issn.1008-973X.2019.11.017
Civil Engineering, Municipal Engineering     
Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar
Bin LUO(),Wei HUANG*(),Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN
Civil Engineering Institute, Xi’an University of Architecture and Technology, Xi’an 710055, China
Download: HTML     PDF(1788KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to improve the industrial production efficiency of prefabricated concrete sandwich insulation composite panels (CSICPs) for fabricated buildings, the effects of density, water absorption, thermal conductivity, compressive strength, flexural strength, tension-compression ratio, and softening coefficient of the block material were considered using the method of orthogonal experimental design. The optimum mix proportion of core materials, i.e. expanded polystyrene thermal insulation mortar (ETIM), which was suitable for CSICP was obtained by the analysis of range and variance. Based on this, comparison tests of bending performance were conducted among two CSICPs with ETIM core, one CSICP with expanded polystyrene board (EPS) core and one ordinary concrete composite slab with steel bar truss. Analysis were conducted from the perspectives of ultimate bearing capacity, load-deflection curves, load-rebar strain curves and anti-slip performance. Results show that the four specimens share similar flexural behaviors and undergo elastic phase, elastic-plastic phase and failure phase. The shape of precast bottom panel and the core material have great impact on the flexural performance of CSICPs. The flexural behavior of CSICP with ETIM core is better than that of CSICP with EPS core. Configuration of steel bar truss has a significant improvement on the flexural performance and anti-horizontal-slip performance of CSICPs.



Key wordsexpanded polystyrene thermal insulation mortar (ETIM)      mix proportion      composite slab      flexural behavior      slip     
Received: 04 September 2018      Published: 21 November 2019
CLC:  TU 375  
  TU 317  
Corresponding Authors: Wei HUANG     E-mail: Robin198595@163.com;huanwei2005@126.com
Cite this article:

Bin LUO,Wei HUANG,Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN. Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2185-2196.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.11.017     OR     http://www.zjujournals.com/eng/Y2019/V53/I11/2185


采用发泡聚苯乙烯保温砂浆芯材的夹芯叠合板受弯性能

为了提升装配式建筑预制夹芯保温叠合板(CSICPs)的工业化生产效率,从材料密度、吸水率、导热系数、抗压强度、抗折强度、压折比及软化系数等指标出发,借助正交试验设计方法,采用极差及方差分析,确定适用于夹芯保温叠合板的发泡聚苯乙烯保温砂浆(ETIM)的最佳配比. 在此基础上,针对2块ETIM夹芯保温叠合板、1块发泡聚苯乙烯(EPS)板夹芯保温叠合板及1块普通钢筋桁架叠合板进行受弯性能对比试验,分别从承载能力、荷载-挠度曲线、荷载-钢筋应变曲线及抗滑移性能方面展开分析. 结果表明:夹芯保温叠合板与普通钢筋桁架叠合板的受弯破坏过程类似,均经历弹性阶段、弹塑性阶段及破坏阶段;预制底板构造形式及芯材对夹芯叠合板的受弯性能有较大影响;采用ETIM芯材的夹芯保温叠合板的受弯性能优于采用EPS板的夹芯保温叠合板;钢筋桁架的配置对提升夹芯保温叠合板的受弯及抗滑移性能有较为显著的作用.


关键词: 发泡聚苯乙烯保温砂浆(ETIM),  配合比,  叠合板,  受弯性能,  滑移 
材料名称 材料型号 材料参数
水泥 P.O 42.5R普通硅酸盐水泥 密度为2 841.4 kg/m3,初凝时间为203 min,终凝时间为230 min
EPS颗粒 原发性EPS颗粒 粒径为3~7 mm,堆积密度为10~12 kg/m3,表观密度为29.0 kg/m3,吸水率≤4.0,传热系数为0.039 W/(m2·K),抗压强度为0.18 MPa,抗拉强度为0.25 MPa
可分散乳胶粉 国产 XA-05 型 最低成膜温度为0~5 ℃,固体质量分数≥98.0%,粒径大于400 μm,
灰分的质量分数为10%±2%
硅粉 郑州吉兴硅粉有限公司 堆积密度为0.2 g/cm3,细度为1 000 目,比表面积为18~20 m2/g
保水剂 羟丙基甲基纤维素醚 细度≥100 目,黏度为20 000 mPa·s
混杂纤维 聚丙烯纤维与木纤维按体积比1∶1掺入 聚丙烯纤维长度为10 mm,比重为0.91 g/cm3,弹性模量为3 500 MPa,抗拉强度为400 MPa;木纤维规格为H-1 000 μm
引气剂 国产 DARAVAIR110 型引气剂
减水剂 国产 FDN-C 型减水剂
防水剂 有机硅防水剂 S
Tab.1 Main materials of ETIM
w(SiO2)/% w(Al2O3)/% w(Fe2O3)/% w(MgO)/% w(CaO)/% w(NaO)/% pH平均值
75.0~98.0 1.0 ± 0.2 0.9 ± 0.3 0.7 ± 0.1 0.3 ± 0.1 1.3 ± 0.2 中性
Tab.2 Main chemical constituents of silica fume
Fig.1 Schematic diagram of surface modification of EPS
测试内容 测试标准号 试样尺寸/mm
物理测试 密度 《胶粉聚苯颗粒外墙外保温系统》JGT 158-2004[17] 70.7×70.7×70.7
吸水率 《建筑砂浆基本性能试验方法标准》JGJ/T 70-2009[18] 70.7×70.7×70.7
软化系数 《建筑砂浆基本性能试验方法标准》JGJ/T 70-2009[18] 70.7×70.7×70.7
力学性能 抗压强度 《建筑砂浆基本性能试验方法标准》JGJ/T70-2009[18] 70.7×70.7×70.7
抗折强度 《水泥胶砂强度检验方法(ISO法)》GB/T 17571-1999[19] 40.0×40.0×160.0
热工学性能 导热系数 《绝热材料稳态热阻及有关特性的测定防护热板法》GB/T 10295-2008[20] 300.0×300.0×30.0
Tab.3 Test content, specification and method of ETIM samples
试件编号 ρ/(kg·m?3 ${W_{\rm{x}}}$ $\psi $ ${f_{{\rm{c}}}}$/MPa ${f_{\rm{f}}}$/MPa ${f_{\rm{c}}}/{f_{\rm{f}}}$ $\lambda $/(W·m?1·K?1
1 502.91 0.76 0.96 1.38 0.54 2.56 0.121
2 527.88 0.60 0.97 1.88 1.07 1.76 0.137
3 535.45 1.02 0.66 2.27 0.75 3.03 0.124
4 377.54 1.20 0.84 0.89 0.80 1.10 0.104
5 411.54 1.24 0.84 1.13 0.88 1.28 0.110
6 412.01 1.51 0.65 1.04 0.75 1.39 0.117
7 344.69 1.22 0.69 0.84 0.66 1.28 0.101
8 355.58 1.15 0.81 0.70 0.68 1.03 0.102
9 353.70 1.73 0.70 0.74 0.43 1.71 0.133
10 458.31 1.69 0.87 1.33 0.82 1.62 0.141
11 517.08 0.58 0.85 1.44 0.97 1.49 0.144
12 523.36 1.01 0.66 2.06 0.90 2.28 0.137
13 388.09 3.10 0.82 0.73 0.63 1.15 0.143
14 410.01 0.89 0.88 1.24 0.91 1.36 0.140
15 422.38 1.57 0.81 1.25 0.98 1.27 0.105
16 369.23 1.56 0.89 0.84 0.77 1.09 0.097
17 315.76 2.12 0.61 0.76 0.76 1.00 0.118
18 345.39 1.35 0.86 0.72 0.59 1.22 0.116
Tab.4 Results of orthogonal design for physical, mechanical and thermal properties of ETIM
因素 ρ/(kg·m?3 ${W_{\rm{x}}}$ $\psi $ ${f_{{\rm{c}}}}$/MPa
K1 K2 K3 R K1 K2 K3 R K1 K2 K3 R K1 K2 K3 R
A 510.83 403.60 347.39 166.44 0.94 1.59 1.52 0.64 0.83 0.81 0.76 0.07 1.73 1.05 0.77 0.96
B 406.80 422.98 432.05 25.25 1.59 1.10 1.37 0.49 0.85 0.83 0.72 0.12 1.00 1.19 1.35 0.35
C 414.90 423.49 423.43 8.60 1.33 1.42 1.30 0.12 0.80 0.81 0.79 0.01 1.07 1.23 1.24 0.16
D 422.02 429.33 410.48 18.85 1.05 1.18 1.82 0.77 0.82 0.83 0.75 0.08 1.11 1.27 1.16 0.16
E 416.29 412.14 433.40 21.26 1.61 1.24 1.20 0.41 0.75 0.85 0.79 0.10 1.11 1.13 1.30 0.18
F 428.56 413.51 419.90 14.95 1.20 1.45 1.40 0.25 0.82 0.76 0.81 0.06 1.23 1.18 1.13 0.11
G 416.02 428.00 417.80 11.98 1.29 1.51 1.24 0.27 0.86 0.81 0.72 0.14 1.09 1.11 1.34 0.26
主次
因素
以密度为考核指标的影响因素主
次顺序为:A>B>E>D>F>G>C;配
比为:A3 B1 C3 D3 E1 F2 G1制备的
ETIM密度最低
以吸水率为考核指标的影响因
素主次顺序为:D>A>B>E>G>F>C;配比为:
A1 B2 C3 D1 E3 F1 G3制备的ETIM吸水率最低
以软化系数为考核指标的影响
因素主次顺序为:G>B>E>D>A>F>C;配比为:
A1 B1 C2 D2 E2 F1 G1制备的ETIM软化系数最大
以抗压强度为考核指标的影响
因素主次顺序为:A>B>G>E>C>D>F;配比为:
A1 B3 C3 D2 E3 F1 G3制备的ETIM抗压强度最高
Tab.5 Range analysis of ETIM for physical, mechanical and thermal properties
考核指标 方差来源 偏差平方和 方差估计值 F 显著性1) 考核指标 方差来源 偏差平方和 方差估计值 F 显著性
干密度 A 82 742.302 41 371.150 0 281.856 ** 抗折强度 A 0.138 0.069 0 19.714 *
B 1 963.697 981.848 5 6.689 B 0.105 0.052 5 15.000
C 293.562 146.781 0 1.000 C 0.006 0.003 0 0.857
D 1 084.209 542.104 5 3.693 D 0.083 0.041 5 11.857
E 1 523.586 761.793 0 5.190 E 0.047 0.023 5 6.714
F 675.884 337.942 0 2.302 F 0.042 0.021 0 6.000
G 501.345 250.672 5 1.708 G 0.007 0.003 5 1.000
误差 293.562 146.781 0 误差 0.007 0.003 5
总和 89 078.147 总和 0.435
吸水率 A 1.500 0.750 0 32.609 * 压折比 A 3.125 1.562 5 115.741 **
B 0.727 0.363 5 15.804 B 0.781 0.390 5 28.926 *
C 0.046 0.023 0 1.000 C 0.027 0.013 5 1.000
D 2.011 1.005 5 43.717 * D 0.134 0.067 0 4.963
E 0.607 0.303 5 13.196 E 0.048 0.024 0 1.778
F 0.215 0.107 5 4.674 F 0.329 0.164 5 12.185
G 0.248 0.124 0 5.391 G 0.190 0.095 0 7.037
误差 0.046 0.023 0 误差 0.027 0.013 5
总和 5.400 总和 4.661
软化系数 A 0.015 0.007 5 15.000 导热系数 A 0.001 57 0.000 79 0.990
B 0.052 0.026 0 52.000 * B 0.000 15 0.000 08 0.100
C 0.001 0.000 5 1.000 C 0.000 05 0.000 02 0.030
D 0.022 0.011 0 22.000 * D 0.000 64 0.000 32 0.400
E 0.032 0.016 0 32.000 * E 0.000 67 0.000 34 0.420
F 0.010 0.005 0 10.000 F 0.000 04 0.000 02 0.020
G 0.057 0.028 5 57.000 * G 0.000 50 0.000 25 0.310
误差 0.001 0.000 5 误差 0.000 80 0.000 40
总和 0.190 总和 0.004 42
抗压强度 A 2.925 1.462 5 86.029 * 1)注“**”表示非常显著;“*”表示显著;2. 表中各考核指标下的7个因素及误差的自由度均为2,总和自由度均为16;3. 7个因素在密度、吸水率、抗压强度、抗折强度、压折比及软化系数下的F0.01=99.000、F0.05=19.000,在导热系数考核指标下的F0.01=30.800、F0.05=9.550
B 0.358 0.179 0 10.529
C 0.096 0.048 0 2.824
D 0.080 0.040 0 2.353
E 0.120 0.060 0 3.529
F 0.034 0.017 0 1.000
G 0.242 0.121 0 7.118
误差 0.034 0.017 0
总和 3.889
Tab.6 Variance analysis of ETIM for physical, mechanics and thermal properties
试件编号 预制底板构造/材质 夹芯层材质 后浇层材质 L/mm W/mm hb/mm hc/mm ht/mm
DHB-1 钢筋桁架/C30混凝土 C30混凝土 3 000 900 60 0 60
JXB-1 钢筋桁架/C30混凝土 ETIM C30混凝土 3 000 900 60 30 60
JXB-2 平面拉毛/C30混凝土 ETIM C30混凝土 3 000 900 60 30 60
JXB-3 钢筋桁架/C30混凝土 EPS板 C30混凝土 3 000 900 60 30 60
Tab.7 Parameters of concrete composite slabs
Fig.2 Geometric dimensioning and structure of concrete composite slabs
Fig.3 Loading test site of concrete composite slab samples
Fig.4 Location arrangement of strain gauges and linear variable differential transformers of concrete composite slabs
试件编号 Fcr /kN1) Fy/kN Fu/kN
1)注:叠合板特征荷载均未计入自重及加载分配梁重量
DHB-1 17.00 53.35 78.60
JXB-1 34.30 122.06 142.30
JXB-2 30.30 89.86 105.50
JXB-3 26.30 83.15 101.10
Tab.8 Characteristic loads of concrete composite slabs
Fig.5 Failure patterns and crack distribution of concrete composite slabs
Fig.6 Load-deflection curves at mid-span of concrete composite slabs
Fig.7 Load-rebar strain curves of concrete composite slabs
Fig.8 Load-slip curves at end of concrete composite slabs
试件编号 ${\sigma _{\rm{t}}}$/MPa ${\sigma _{\rm{b}}}$/MPa Ie/(106 mm4) Ie/Ig1)
1)注:Ig=253.13×106 mm4
JXB-1 –4.39 3.01 246.83 97.51%
JXB-2 –4.22 2.98 224.10 88.53%
JXB-3 –3.22 2.78 233.41 92.21%
Tab.9 Composite performance of CSICP in elastic stage
Fig.9 Calculation schematic diagrams of flexural capacity for CSICP
试件编号 Mut/(kN·m) Mun/(kN·m) Muf/(kN·m) Mut/Muf
JXB-1 67.92 10.76 91.51 74.22%
JXB-2 54.85 10.76 91.51 59.94%
JXB-3 53.19 10.76 91.51 58.12%
Tab.10 Composite performance of CSICP in failure phase
[1]   中华人民共和国住房和城乡建设部. 工业化建筑评价标准: GB/ T 51129—2015 [S]. 北京: 中国建筑工业出版社, 2015: 6-9.
[2]   JIANG H, GUO Z, LIU J, et al The shear behavior of precast concrete sandwich panels with W-shaped SGFRP shear connectors[J]. KSCE Journal of Civil Engineering, 2018, 22 (4): 1- 11
[3]   李砚波, 杜媛媛, 门东浩 混凝土夹芯板受弯性能分析[J]. 建筑结构, 2015, (16): 91- 95
LI Guan-bo, DU Yuan-yuan, MEN Dong-hao Analysis on bending performance of concrete sandwich panels[J]. Building Structure, 2015, (16): 91- 95
[4]   杜媛媛. 混凝土夹芯板的结构优化分析[D]. 天津: 天津大学, 2016.
DU Yuan-yuan. Optimization analysis of concrete sandwich panels [D]. Tianjing: Tianjin University, 2016.
[5]   DANIEL R J J, PRABAKAR J, ALAGUSUNDARAMOORTHY P Flexural behavior of precast concrete sandwich panels under different loading conditions such as punching and bending[J]. Alexandria Engineering Journal, 2016, (Suppl.1): 1- 12
[6]   TOMLINSON D, FAM A Analytical approach to flexural response of partially composite insulated concrete sandwich walls used for cladding[J]. Engineering Structures, 2016, (122): 251- 266
[7]   MOHAMAD N, KHALIFA H, SAMAD A A, et al Structural performance of recycled aggregate in CSP slab subjected to flexural load[J]. Construction and Building Materials, 2016, 115: 669- 680
doi: 10.1016/j.conbuildmat.2016.04.086
[8]   JOSEPH J D R, PRABAKAR J, ALAGUSUNDARAMOORTHY P Precast concrete sandwich one-way slabs under flexural loading[J]. Engineering Structures, 2017, 138: 447- 457
doi: 10.1016/j.engstruct.2017.02.033
[9]   SCHACKOW A, EFFTING C, FOLGUERAS M V, et al Mechanical and thermal properties of lightweight concretes with vermiculite and EPS using air-entraining agent[J]. Construction and Building Materials, 2014, 57 (9): 190- 197
[10]   孙立国, 杜成斌, 王大鹏 EPS材料力学性能测试及装饰构件数值仿真[J]. 建筑材料学报, 2013, 16 (4): 637- 641
SUN Li-guo, DU Cheng-bin, WANG Da-peng Mechanical analysis and numerical simulation of EPS exterior decorative element[J]. Journal of Building Materials, 2013, 16 (4): 637- 641
doi: 10.3969/j.issn.1007-9629.2013.04.015
[11]   王俊, 赵基达, 胡宗羽 我国建筑工业化发展现状与思考[J]. 土木工程学报, 2016, (5): 1- 8
WANG Jun, ZHAO Ji-da, HU Zong-yu Review and thinking on development of building industrialization in China[J]. Civil Engineering Journal, 2016, (5): 1- 8
[12]   秦尚松, 刘元珍, 李珠, 等. 保温砂浆墙体保温系统温度效应研究 [J]. 工程力学, 2011(增1): 64-68.
QIN Shang-song, LIU Yuan-zhen, LI Zhu, et al. Study on temperature effects on walls with thermal insulation mortar system [J]. Engineering Mechanics, 2011(Suppl.1): 64-68.
[13]   陈兵, 刘宁, 邓初晴 EPS保温砂浆性能试验研究[J]. 哈尔滨工程大学学报, 2012, 33 (6): 671- 676
CHEN Bing, LIU Ning, DENG Chu-qing Experimental studies on the properties of EPS thermal insulating mortar[J]. Journal of Harbin Engineering University, 2012, 33 (6): 671- 676
doi: 10.3969/j.issn.1006-7043.201105084
[14]   杨增科, 黄炜, 张敏 基于不同保温形式装配式复合墙抗震性能试验研究[J]. 西安建筑科技大学学报:自然科学版, 2018, (1): 51- 56
YANG Zeng-ke, HUANG Wei, ZHANG Min Experimental study on aseismic performance of assembly type composite wall based on different heat preservation forms[J]. Journal of Xi’an University of Architecture and Technology: Natural Science, 2018, (1): 51- 56
[15]   孙钢柱 改性EPS保温砂浆配合比及性能试验研究[J]. 郑州大学学报: 工学版, 2011, 32 (5): 7- 10
SUN Gang-zhu Mix proportion and performance of modified EPS thermal insulating mortar[J]. Journal of Zhengzhou University: Engineering Science, 2011, 32 (5): 7- 10
[16]   胡欣. 发泡聚苯乙烯(EPS)颗粒表面改性工艺及其保温砂浆性能的研究[D]. 南昌: 南昌大学, 2008: 9-16.
HU Xin. Study on surface modification technology of EPS particles and properties of thermal insulation mortar [D]. Nanchang: Nanchang University, 2008: 9-16.
[17]   中华人民共和国住房和城乡建设部. 胶粉聚苯颗粒外墙外保温系统: JGT/158—2004 [S]. 北京: 中国建筑工业出版社, 2004.
[18]   中华人民共和国住房和城乡建设部. 建筑砂浆基本性能试验方法标准: JGJ/T70—2009 [S]. 北京: 中国建筑工业出版社, 2009.
[19]   中华人民共和国国家质量监督检验检疫总局. 水泥胶砂强度检验方法(ISO法): GB/T17571—1999 [S]. 北京: 中国建筑工业出版社, 1999.
[20]   中华人民共和国国家质量监督检验检疫总局. 绝热材料稳态热阻及有关特性的测定防护热板法: GB/T10295—2008 [S]. 北京: 中国建筑工业出版社, 2008.
[21]   STEEVES C, ELECK N Collapse mechanisms of sandwich beams with composite face sheets and a foam core, loaded in three-point bending. part I: analytical models and minimum weight design[J]. Sederi Yearbook, 2004, 12 (3): 7- 26
[22]   STEEVES C, ELECK N Collapse mechanisms of sandwich beams with composite faces and a foam core, loaded in three-point bending. part Ⅱ: experimental investigation and numerical modelling[J]. International Journal of Mechanical Sciences, 2004, 46 (4): 585- 608
doi: 10.1016/j.ijmecsci.2004.04.004
[23]   中华人民共和国住房和城乡建设部. 膨胀聚苯板薄抹灰外墙外保温系统: JG149—2015 [S]. 北京: 中国标准出版社, 2015: 3-4.
[24]   陕西省住房和城乡建设厅. 装配式复合墙结构技术规程: DBJ61/T 94—2015 [S]. 陕西: 中国建材工业出版社, 2015: 47.
[25]   中华人民共和国住房和城乡建设部. 混凝土结构试验方法标准: GB/T 50152—2012 [S]. 北京: 中国建筑工业出版社, 2012: 17-25.
[26]   曹万林, 张洁, 董宏英, 等 带钢筋桁架高强再生混凝土板受弯性能试验研究[J]. 建筑结构学报, 2014, 35 (10): 31- 38
CAO Wan-lin, ZHANG Jie, DONG Hong-ying, et al Experimental research on flexural performance of high strength recycled aggregate concrete slabs with steel bar truss[J]. Journal of Building Structures, 2014, 35 (10): 31- 38
[27]   EIINEA A, SALMON D C, FOGARASI G J, et al State of the art of precast sandwich panel system[J]. PCI Journal, 1991, 36 (6): 90- 101
[1] Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.
[2] Jing LI,Chen WANG,Jia-xu ZHANG. Wheel slip tracking control of vehicle based on adaptive fast terminal sliding mode control method[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(1): 169-176.
[3] Lei DING,Gen-shu TONG,Lei ZHANG. Shear behavior of exposed steel column base joint[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 73-82.
[4] Xian-rong DAI,Lu WANG,Chang-jiang WANG,Xiao-yang WANG,Rui-li SHEN. Anti-slip scheme of full-vertical friction plate for multi-pylon suspension bridge[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1697-1703.
[5] CHEN Ying-qi, WANG Quan-cai. Optimization calculation of design thrust for landslide[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1320-1328.
[6] PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, HE Hai-jie, FU Yan-ming, ZHENG Xue-juan. Application of loading berm in landfill partial slip control[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 710-718.
[7] WANG Yong-bao, ZHAO Ren-da, WU De-bao. Time-dependent behavior of concrete-filled steel tube considering initial stress and bond-slip effect[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(12): 2306-2313.
[8] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.
[9] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(4): 739-744.
[10] YANG Qin, ZHANG Hai-jun, SHEN Jian-ying, LIU Yu-lu. Extended velocity slip boundary condition based on Boltzmann moment equations[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(12): 2408-2413.
[11] WANG Zhen,WANG Jing quan,QI Jia nan. Computing model for deformation capacity of concrete filled steel tube reinforced concrete bridge columns[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(5): 864-870.
[12] MA Hao jun, ZHU Shao peng, YU Xiao li, XU Yin chuan, LIN Ding. Electronic differential control considering rolling movement for electric vehicles[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(3): 566-573.
[13] XU Bing, CHAO Qun, ZHANG Jun-hui, LI Ying. Slipper optimization model based on equilibrium coefficient[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1009-1014.
[14] LI Da-peng,TANG De-gao,YAN Feng-guo,HUANG Mu. Mechanics of deep excavation’s spatial effect and soil pressure calculation method considering its influence[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(9): 1632-1639.
[15] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1933-1940.