Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1727-1735    DOI: 10.3785/j.issn.1008-973X.2023.09.004
    
Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials
Wei WANG1,2(),Shuai-shuai HUANG1,Wen-jie YU3,Xu-ming CHE1,Na LI1,2,*()
1. School of Civil Engineering, Shaoxing University, Shaoxing 312000, China
2. Shaoxing Key Laboratory of Interaction between Soft Soil Foundation and Building Structure, Shaoxing 312000, China
3. Shaoxing Kezhu Expressway Limited Company, Shaoxing 312000, China
Download: HTML     PDF(1673KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To study the effect of fiber-nano materials on the shear characteristics of cement stabilized road solid waste recycled aggregates, the shear strength characteristics of cement-stabilized recycled aggregate (CA), the polypropylene fiber cement-stabilized recycled aggregates (PCA), the nano-magnesia cement-stabilized recycled aggregate (MCA), the nano-silica cement-stabilized recycled aggregate (SCA), the polypropylene fiber-nano-magnesia cement-stabilized recycled aggregate (PMCA), and the polypropylene fiber-nano-silica cement-stabilized recycled aggregate (PSCA) were evaluated and characterized by the direct shear tests. Experimental results showed that the shear stress-displacement curve of each group of the samples gradually changed from the softening to the hardening with the increase of the vertical pressure. MCA, SCA, PMCA and PSCA showed larger friction angle than CA, and the cohesion of PCA、MCA、SCA、PMCA、PSCA was greater than that of CA. A composite sine-power function (CSP) model was proposed, which was more applicable than traditional models. And the softening and the hardening stress-displacement curves were simulated effectively by the CSP model. A general formula for the stress-displacement relationship of each group of the samples was established, and the formula fitted well with the measured data.



Key wordsroad solid waste      recycled aggregate      fiber-nano materials      shear strength      composite sine-power function (CSP) model     
Received: 25 November 2022      Published: 16 October 2023
CLC:  TU 447  
  TU 521  
Fund:  国家自然科学基金资助项目(52179107)
Corresponding Authors: Na LI     E-mail: wellswang@usx.edu.cn;lina@usx.edu.cn
Cite this article:

Wei WANG,Shuai-shuai HUANG,Wen-jie YU,Xu-ming CHE,Na LI. Direct shear mechanical behavior of cement stabilized road solid waste modified by fibers and nanomaterials. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1727-1735.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.004     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1727


纤维和纳米材料改性水泥稳定道路固废的直剪力学行为

为了研究纤维-纳米材料对水泥稳定道路固废再生集料抗剪特性的影响,通过直剪试验对水泥稳定再生集料(CA)、聚丙烯纤维水泥稳定再生集料(PCA)、纳米氧化镁水泥稳定再生集料(MCA)、纳米二氧化硅水泥稳定再生集料(SCA)、聚丙烯纤维-纳米氧化镁水泥稳定再生集料(PMCA)和聚丙烯纤维-纳米二氧化硅水泥稳定再生集料(PSCA)的抗剪强度特性进行评价和表征. 试验结果表明:各组试样的剪应力-位移曲线随着垂直压力的增加逐渐由软化型向硬化型转变;MCA、SCA、PMCA、PSCA的摩擦角比CA的摩擦角更大,PCA、MCA、SCA、PMCA、PSCA的黏聚力均大于CA. 提出复合正弦-幂函数(CSP)模型,该模型可以有效地模拟软化型和硬化型应力-位移曲线,比传统模型更具适用性. 建立各组试样的应力-位移关系的通用公式,该公式与实测数据拟合效果良好.


关键词: 道路固废,  再生集料,  纤维-纳米材料,  抗剪强度,  复合正弦-幂函数(CSP)模型 
Fig.1 Source of recycled aggregate from road solid waste
材料 参数 数值
道路固废再生集料 d 2.69
塑限ωp/% 10.29
液限ωL/% 18.95
塑性指数IP 8.66
液性指数IL ?1.61
最大干密度/(g·cm?3) 2.04
wwp/% 10
wm/% 33.03
聚丙烯纤维 密度/(g·cm?3) 2.6
平均长度/mm 6
直径/μm 19-49
弹性模量/GPa >3.5
抗拉强度/MPa >349
拉伸极限/% >15
熔点/℃ >145
纳米MgO 产品纯度/% 99.8
平均粒度/nm 15-20
理论密度/(g·cm?3) 3.58
纳米SiO2 产品纯度/% 99.90
平均粒度/nm 17
理论密度/(g·cm?3) 0.045
Tab.1 Basic parameters of fiber-nano material cement stabilized road solid waste test materials
Fig.2 Grain gradation of recycled aggregate from road solid waste
集料名称 wc/% ww/% wpp/% wMgO/% wSi/%
CA 10 30 0 0 0
PCA 0.6 0 0
MCA 0 1.5 0
SCA 0 0 0.2
PMCA 0.6 1.5 0
PSCA 0.6 0 0.2
Tab.2 Direct shear test program of modified road solid waste
Fig.3 Direct shear test curve of modified road solid waste sample
Fig.4 Shear strength of modified road solid waste samples under different vertical pressures
Fig.5 Increase of shear strength of modified road solid waste sample under vertical pressure of 100 kPa
集料名称 抗剪强度表达式 $c$/kPa $\varphi $/(°)
CA $\tau_{\rm{m}}= 0.66p+46.67$ 46.67 33.42
PCA $\tau_{\rm{m}} = 0.64p+74.78$ 74.78 32.62
MCA $ \tau_{\rm{m}} = 0.70p+61.58 $ 61.58 34.99
SCA $ \tau_{\rm{m}} = 0.72p+66.84 $ 66.84 35.75
PMCA $ \tau_{\rm{m}} = 0.73p+70.27 $ 70.27 36.13
PSCA $ \tau_{\rm{m}} = 0.75p+75.68 $ 75.68 36.87
Tab.3 Shear strength index of modified road solid waste sample
Fig.6 Shear stress-displacement characteristic curve
Fig.7 Typical curves of composite sine power function model with different parameters
集料名称 p/kPa a/kPa b c/kPa d R2
CA 100 115.38 2.75 0.75 0.87 0.978
200 168.55 2.89 0.36 0.79 0.998
300 246.40 3.00 0.24 0.78 0.998
400 353.11 2.10 0.23 0.75 0.999
PCA 100 134.79 2.61 0.51 1.01 0.994
200 200.09 3.01 0.29 0.82 0.997
300 267.15 6.00 0.07 0.66 0.997
400 352.33 8.58 0.04 0.70 0.999
MCA 100 134.83 2.55 0.82 1.19 0.994
200 194.31 3.17 0.31 0.89 0.997
300 272.13 4.04 0.12 0.68 0.999
400 355.98 5.76 0.07 0.77 0.999
SCA 100 130.68 2.61 1.05 1.09 0.996
200 199.03 3.11 0.36 0.88 0.998
300 277.80 2.95 0.35 1.11 0.998
400 353.75 4.46 0.12 0.90 0.999
PMCA 100 144.49 2.68 0.70 1.15 0.994
200 208.26 2.52 0.49 1.00 0.999
300 286.45 2.73 0.26 0.92 0.999
400 380.82 2.34 0.31 1.03 0.999
PSCA 100 155.21 2.66 0.67 1.13 0.988
200 209.14 3.39 0.27 0.68 0.991
300 297.23 2.67 0.39 1.09 0.998
400 385.63 3.08 0.21 1.00 0.999
Tab.4 CSP model fitting parameters of modified road solid waste samples
集料名称 关系式 集料名称 关系式
CA a=791.04p+23.1 SCA a=747.98p+53.32
b=?26p2+11.16p+1.85 b=25.25p2?7.23p+3.2
c=9.5p2?6.43p+1.29 c=11.5p2?8.55p+1.74
d=1.25p2?p+0.95 d=?0.34p+1.08
PCA a=719.68p+58.67 PMCA a=787.18p+58.21
b=54.5p2?6.35p+2.55 b=?5.75p2+2.06p+2.48
c=4.75p2?4.01p+0.87 c=6.5p^2?4.65p+1.12
d=5.75p2?3.97p+1.36 d=6.5p2?3.69p+1.46
MCA a=741.27p+54 PSCA a=779.35p+66.96
b=27.5p2?3.25p+2.63 b=?8p2+4.54p+2.42
c=11.5p2?8.19p+1.52 c=5.5p2?4.01p+0.97
d=9.75p2?6.35p+1.74 d=9p2?4.48p+1.42
Tab.5 Relationship between CSP model parameters and vertical pressure of modified road solid waste sample
Fig.8 CSP model prediction curve and measured value of modified road solid waste direct shear test
[15]   成次次, 俞文杰, 刘静静, 等 纳米MgO改性水泥膨胀土短龄期内的三轴力学特性与数学模型研究[J]. 铁道科学与工程学报, 2021, 18 (9): 2307- 2315
CHENG Ci-ci, YU Wen-jie, LIU Jing-jing, et al Study on triaxial mechanical properties and mathematical model of nano-MgO modified cement expansive soil in a short period of time[J]. Journal of Railway Science and Engineering, 2021, 18 (9): 2307- 2315
doi: 10.19713/j.cnki.43-1423/u.T20201048
[16]   KONG R , YAN B, XU J, et al. Physical homogenization and chemical stability of nano-SiO2 treated loess [J]. Soil Mechanics and Foundation Engineering, 2019, 56 (5): 336- 339
doi: 10.1007/s11204-019-09611-9
[17]   NASERI F, IRANI M, DEHKHODARAJABI M Effect of graphene oxide nanosheets on the geotechnical properties of cemented silty soil[J]. Archives of Civil and Mechanical Engineering, 2016, 16 (4): 695- 701
doi: 10.1016/j.acme.2016.04.008
[18]   WANG W, ZHANG C, LI N, et al Characterisation of nano magnesia-cement-reinforced seashore soft soil by direct-shear test[J]. Marine Georesources and Geotechnology, 2019, 37 (8): 989- 998
doi: 10.1080/1064119X.2018.1515283
[19]   YAO K, AN D L, WANG W, et al Effect of nano-MgO on mechanical performance of cement stabilized silty clay[J]. Marine Georesources and Geotechnology, 2020, 38 (2): 250- 255
doi: 10.1080/1064119X.2018.1564406
[20]   CUI H Z, JIN Z Y, BAO X H, et al Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms[J]. Construction and Building Materials, 2018, 189: 286- 295
doi: 10.1016/j.conbuildmat.2018.08.181
[21]   ESTABRAGH A R, KHOLOOSI M, GHAZIANI F, et al Mechanical and leaching behavior of a stabilized and solidified anthracene-contaminated soil[J]. Journal of Environmental Engineering, 2018, 144 (2): 04017098
doi: 10.1061/(ASCE)EE.1943-7870.0001311
[22]   YADAV J S, TIWARI S K Effect of waste rubber fibres on the geotechnical properties of clay stabilized with cement[J]. Applied Clay Science, 2017, 149: 97- 110
doi: 10.1016/j.clay.2017.07.037
[23]   鹿群, 郭少龙, 王闵闵, 等 纤维水泥土力学性能的试验研究[J]. 岩土力学, 2016, 37 (Suppl.2): 421- 426
LU Qun, GUO Shao-long, WANG Min-min, et al Experimental study of mechanical properties of fiber cement soil[J]. Rock and Soil Mechanics, 2016, 37 (Suppl.2): 421- 426
doi: 10.16285/j.rsm.2016.S2.055
[24]   CHOOBBASTI A J, VAFAEI A, KUTANAEI S S Static and cyclic triaxial behavior of cemented sand with nanosilica[J]. Journal of Materials in Civil Engineering, 2018, 30 (10): 04018269
doi: 10.1061/(ASCE)MT.1943-5533.0002464
[25]   XIAO H W, LIU Y A prediction model for the tensile strength of cement-admixed clay with randomly orientated fibres[J]. European Journal of Environmental and Civil Engineering, 2018, 22 (9): 1131- 1145
doi: 10.1080/19648189.2016.1232662
[26]   GAO C H, DU G Y, GUO Q, et al Static and dynamic behaviors of basalt fiber reinforced cement-soil after freeze-thaw cycle[J]. KSCE Journal of Civil Engineering, 2020, 24 (12): 3573- 3583
doi: 10.1007/s12205-020-2266-5
[1]   MARTINEZ-ECHEVARRIA M J, LOPEZ-ALONSO M, GARACH L, et al Crushing treatment on recycled aggregates to improve their mechanical behaviour for use in unbound road layers[J]. Construction and Building Materials, 2020, 263: 120517
doi: 10.1016/j.conbuildmat.2020.120517
[2]   BAO Z K, LEE W M W, LU W S Implementing on-site construction waste recycling in Hong Kong: barriers and facilitators[J]. Science of The Total Environment, 2020, 747: 141091
doi: 10.1016/j.scitotenv.2020.141091
[27]   中华人民共和国交通运输部. 公路工程无机结合料稳定材料试验规程: JTG E51—2009 [S]. 北京: 人民交通出版社, 2009.
[28]   中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020 [S]. 北京: 人民交通出版社, 2020.
[3]   SILVA R V, DE BRITO J, DHIR R K Use of recycled aggregates arising from construction and demolition waste in new construction applications[J]. Journal of Cleaner Production, 2019, 236: 117629
doi: 10.1016/j.jclepro.2019.117629
[4]   MA M X, TAM V W Y, LE K N, et al Challenges in current construction and demolition waste recycling: a China study[J]. Waste Management, 2020, 118: 610- 625
doi: 10.1016/j.wasman.2020.09.030
[5]   MOHAMMADINIA A, NAEINI M, ARULRAJAH A, et al Shakedown analysis of recycled materials as railway capping layer under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106423
doi: 10.1016/j.soildyn.2020.106423
[29]   中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.
[30]   WEI J H, KONG F X, LIU J, et al Effect of sisal fiber and polyurethane admixture on the strength and mechanical behavior of sand[J]. Polymers, 2018, 10 (10): 1121
doi: 10.3390/polym10101121
[6]   曹智国, 章定文 水泥土无侧限抗压强度表征参数研究[J]. 岩石力学与工程学报, 2015, 34 (Suppl.1): 3446- 3454
CAO Zhi-guo, ZHANG Ding-wen Key parameters controlling unconfined compressive strength of soil-cement mixtures[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34 (Suppl.1): 3446- 3454
doi: 10.13722/j.cnki.jrme.2014.0031
[31]   王伟, 刘静静, 李娜, 等 纳米SiO2改性滨海水泥土的短龄期力学性能与微观机制 [J]. 复合材料学报, 2022, 39 (4): 1701- 1704
WANG Wei, LIU Jing-jing, LI Na, et al Mechanical properties and micro mechanism of nano-SiO2 modified coastal cement soil at short age [J]. Acta Materiae Compositae Sinica, 2022, 39 (4): 1701- 1704
[7]   GUPTA N, KLUGE M, CHADIK P A, et al Recycled concrete aggregate as road base: leaching constituents and neutralization by soil Interactions and dilution[J]. Waste Management, 2018, 72: 354- 361
doi: 10.1016/j.wasman.2017.11.018
[8]   ZHANG J H, DING L, LI F, et al Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China[J]. Journal of Cleaner Production, 2020, 255: 120223
doi: 10.1016/j.jclepro.2020.120223
[9]   阮波, 阮庆, 田晓涛, 等 淤泥质粉质黏土水泥土无侧限抗压强度影响因素的正交试验研究[J]. 铁道科学与工程学报, 2013, 10 (6): 45- 48
doi: 10.3969/j.issn.1672-7029.2013.06.008
[32]   WANG W, WANG Y X, LV B F, et al Strength characteristics of cement-reinforced recycled aggregate modified with nano-MgO as road bases[J]. Case Studies in Construction Materials, 2022, 17: e01456
doi: 10.1016/j.cscm.2022.e01456
[33]   LIU J, WANG Y, KANUNGO D P, et al Study on the brittleness characteristics of sand reinforced with polypropylene fiber and polyurethane organic polymer[J]. Fibers and Polymers, 2019, 20 (3): 620- 632
doi: 10.1007/s12221-019-8779-1
[9]   RUAN Bo, RUAN Qing, TIAN Xiao-tao, et al The study of the orthotropic test on cement-soil unconfined compressive strength of muddy silty clay[J]. Journal of Railway Science and Engineering, 2013, 10 (6): 45- 48
doi: 10.3969/j.issn.1672-7029.2013.06.008
[10]   XIAO H W, WANG W, GOH S H Effectiveness study for fly ash cement improved marine clay[J]. Construction and Building Materials, 2017, 157: 1053- 1064
doi: 10.1016/j.conbuildmat.2017.09.070
[34]   ZHOU L L, GUO S C, ZHANG Z H, et al Mechanical behavior and durability of coral aggregate concrete and bonding performance with fiber-reinforced polymer (FRP) bars: a critical review[J]. Journal of Cleaner Production, 2021, 289: 125652
doi: 10.1016/j.jclepro.2020.125652
[35]   张涛, 蔡国军, 刘松玉, 等 橡胶–砂颗粒混合物强度特性及微观机制试验研究[J]. 岩土工程学报, 2017, 39 (6): 1082- 1088
doi: 10.11779/CJGE201706014
[11]   BAHMANI S H, HUAT B B K, ASADI A, et al Stabilization of residual soil using SiO2 nanoparticles and cement [J]. Construction and Building Materials, 2014, 64: 350- 359
doi: 10.1016/j.conbuildmat.2014.04.086
[12]   张俊, 翁兴中, 刘军忠, 等 复合固化砂土力学及水稳性能试验研究[J]. 材料导报, 2014, 28 (24): 115- 119+124
[35]   ZHANG Tao, CAI Guo-jun, LIU Song-yu, et al Experimental study on strength characteristics and micromechanism of rubber-sand mixtures[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (6): 1082- 1088
doi: 10.11779/CJGE201706014
[36]   王丽琴, 鹿忠刚, 邵生俊 岩土体复合幂–指数非线性模型[J]. 岩石力学与工程学报, 2017, 36 (5): 1269- 1278
doi: 10.13722/j.cnki.jrme.2016.0634
[12]   ZHANG Jun, WENG Xing-zhong, LIU jun-zhong, et al Experimental research on mechnical property and water stability of complex stabilized sandy soil[J]. Materials Reports, 2014, 28 (24): 115- 119+124
[13]   XIAO Y, HE X, EVANS T, et al Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145: 04019048
doi: 10.1061/(ASCE)GT.1943-5606.0002108
[36]   WANG Li-qin, LU Zhong-gang, SHAO Sheng-jun A composite power exponential nonlinear model of rock and soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (5): 1269- 1278
doi: 10.13722/j.cnki.jrme.2016.0634
[37]   YAO K, LI N, CHEN D H, et al Generalized hyperbolic formula capturing curing period effect on strength and stiffness of cemented clay[J]. Construction and Building Materials, 2019, 199: 63- 71
doi: 10.1016/j.conbuildmat.2018.11.288
[1] Hao SUN,Kun-lin TANG,Ai-bing JIN,Mei-chen LIU,Shuai-jun CHEN,Mu-ya LI. Experimental study on influence of single coarse particle on shear properties of ore-rock particle system[J]. Journal of ZheJiang University (Engineering Science), 2022, 56(10): 2037-2048.
[2] Yang XUE,Yi-ping WU,Fa-sheng MIAO,Lin-wei LI. Back analysis of shear strength parameters of sliding surface by using combination method of random field and Bayes theory[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1118-1127.
[3] Yi-liquan SUN,Yu-xi ZHAO,Tao MENG,Hua-dong WEI,Yun-cai ZHANG. Small eccentric compression performance of reinforced concrete column made with recycled brick-mixed aggregate[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1090-1099.
[4] Xuan-chen DING,Yu-min CHEN,Xin-lei ZHANG. Experimental study on microbial reinforced calcareous sand using ring shear apparatus[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1690-1696.
[5] XU Hui, MIAO Jian-dong, CHEN Ping, ZHAN Liang-tong, LUO Xiao-yong. Measurements of geotechnical properties of municipal solid waste incineration fly ash stabilized by chemical reagents[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(1): 1-10.
[6] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 922-930.
[7] LI Zhi-ning, HAN Tong-chun, DOU Hong-qiang, QIU Zi-yi. Analysis of torque on helical soil nail drilling into strata[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(8): 1426-1433.
[8] WANG Guo-qing, CHENG Zhuang, WANG Zhen-yu, CHEN Feng, ZHANG Yi. Shear capacity of composite member of high strength grouted cement paste and steel plate with shear keys[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(7): 1282-1287.
[9] ZHANG Cheng cheng, ZHU Hong hu, TANG Chao sheng, SHI Bin. Modeling of progressive interface failure of fiber reinforced soil[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(10): 1952-1959.
[10] ZHANG Zhen-ying, YAN Li-jun. Correlation properties of the deformation and the shear strength of fresh municipal solid waste[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(11): 1962-1967.
[11] ZHONG Shi-ying, LING Dao-sheng , WU Xiao-jun, CHEN Yun-min. Review on geotechnical behavior of lunar soil[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(5): 777-784.