Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (4): 657-665    DOI: 10.3785/j.issn.1008-973X.2023.04.002
    
Ultrasound-guided fine Z-pin insertion system
Shao-hua FEI(),Hui-ming DING*(),Hai-jin WANG,Jiang-xiong LI
Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(4249KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An ultrasound-guided fine Z-pin (with a diameter of 0.11 mm) automatic insertion system was proposed to reduce the in-plane damage of traditional Z-pinned composite laminates. The automatic insertion system was designed and developed by the ultrasound-guided fine Z-pin insertion principle. A longitudinal ultrasonic vibrator was designed and analyzed according to the force characteristics of Z-pin insertion process and the design theory of sandwich piezoelectric transducer. The modal and harmonic response of the vibrator was analyzed by using finite element simulation. Impedance analysis and amplitude measurement of the ultrasonic vibrator was conducted. Results showed that the resonant frequency was 70.062 4 kHz and the actual vibration amplitude was 2.578 μm, which accorded with the simulation results. The ultrasound-guided insertion system was constructed. The in-plane tensile, compressive properties and interlaminar fracture toughness of the fine carbon Z-pinned composite laminates were tested. Results show that the in-plane strength reduction is only 1.6% in tension and 3.4% in compression respectively for unidirectional fiber/epoxy laminates reinforced by carbon Z-pins whose volume fraction is 0.2% and diameter is 0.11 mm. The Mode-I fracture toughness can be improved by 14.4 times.



Key wordsfine Z-pin      composite laminate      ultrasonic vibration      in-plane damage      interlaminar fracture toughness     
Received: 13 April 2022      Published: 21 April 2023
CLC:  TB 332  
  TB 552  
Fund:  国家自然科学基金资助项目(51975520)
Corresponding Authors: Hui-ming DING     E-mail: sh_fei@zju.edu.cn;pangding@zju.edu.cn
Cite this article:

Shao-hua FEI,Hui-ming DING,Hai-jin WANG,Jiang-xiong LI. Ultrasound-guided fine Z-pin insertion system. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 657-665.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.04.002     OR     https://www.zjujournals.com/eng/Y2023/V57/I4/657


基于超声引导的微细Z-pin植入系统

为了减少传统Z-pin增强工艺对复合材料层合板造成的面内性能损伤,提出超声引导直径为0.11 mm的微细Z-pin自动植入工艺. 根据超声引导微细Z-pin植入原理,设计开发自动植入系统. 根据Z-pin植入力特性,综合夹心式压电换能器的设计理论,设计纵振型超声振子,利用有限元仿真软件对超声振子进行模态及谐波响应分析,实测超声振子阻抗与振幅特性,得到谐振频率为70.062 4 kHz,振幅为2.578 μm,与仿真结果一致. 搭建超声引导植入系统,对微细Z-pin增强复合材料层合板进行面内拉伸、压缩性能及层间断裂韧性测试. 结果表明,对于体积分数为0.2%、直径为0.11 mm的微细碳纤维Z-pin增强复合材料层合板,拉伸、压缩强度分别下降1.6%和3.4%,Ⅰ型层间断裂韧性可以提升14.4倍.


关键词: 微细Z-pin,  复合材料层合板,  超声振动,  面内损伤,  层间断裂韧性 
Fig.1 Ultrasound-guided fine Z-pin insertion principle[22]
Fig.2 Force-displacement curve of metal Z-pin inserted in prepreg[23]
Fig.3 Ultrasound-guided fine Z-pin insertion unit
Fig.4 Ultrasound-guided fine Z-pin insertion process
Fig.5 Structure of sandwich piezoelectric transducer
Fig.6 Stress and vibration velocity distribution of sandwich piezoelectric transducer
换能器部件 材料 $ \rho $/(kg·mm?3) v/(m·s?1) E/GPa $ \upsilon $
压电陶瓷 PZT8 7 600 3 075 71.9 0.30
后盖板 TC4钛合金 4 500 4 945 110.0 0.34
螺杆 TC4钛合金 4 500 4 945 110.0 0.34
电极片 C5191磷铜片 8 900 3 717 123.0 0.34
Tab.1 Material properties of transducers
Fig.7 Schematic diagram and key dimensions of ultrasonic vibrator
Fig.8 Three-dimensional model of ultrasonic vibrator
Fig.9 Displacement cloud of ultrasonic vibrator
Fig.10 Harmonic response analysis results of ultrasonic vibrator
Fig.11 Final design result of ultrasonic vibrator
Fig.12 Frequency amplitude testing platform of ultrasonic vibrator
Fig.13 Impedance characteristics of ultrasonic vibrator
Fig.14 Amplitude testing results of ultrasonic vibrator
Fig.15 Ultrasound-guided fine Z-pin insertion test platform
Fig.16 Fine Z-pin array
Fig.17 Ultrasound-guided insertion force characteristics
Fig.18 Specimens manufacturing and mechanical testing process
样本 TM/GPa TS/MPa CM/GPa CS/MPa Pmax/N GⅠc/(J·mm?2
SC 120.4 ± 2.6 2341.5 ± 60.9 118.2 ± 6.4 989.2 ± 65.3 66.1 ± 2.2 304.1 ± 20.7
SR2 121.3 ± 4.0 2304.6 ± 94.5 116.4 ± 6.1 955.6 ± 48.7 294.4 ± 22.9 4691.6 ± 394.1
提升比例 +0.7% ?1.6% ?1.5% ?3.4% +345.4% +1442.8%
Tab.2 Mechanical properties of fine Z-pinned composites
[1]   GE L, LI H, ZHANG Y, et al Multiscale viscoelastic behavior of 3D braided composites with pore defects[J]. Composites Science and Technology, 2022, 217: 109114
doi: 10.1016/j.compscitech.2021.109114
[2]   TAPULLIMA J, KIM C H, CHOI J H Analysis and experiment on DCB specimen using I-fiber stitching process[J]. Composite Structures, 2019, 220: 521- 528
doi: 10.1016/j.compstruct.2019.04.020
[3]   PINGKARAWAT K, MOURITZ A P Improving the mode-I delamination fatigue resistance of composites using z-pins[J]. Composites Science and Technology, 2014, 92: 70- 76
doi: 10.1016/j.compscitech.2013.12.009
[4]   DAI S C, YAN W, LIU H Y, et al Experimental study on z-pin bridging law by pullout test[J]. Composites Science and Technology, 2004, 64: 2451- 2457
doi: 10.1016/j.compscitech.2004.04.005
[5]   MOURITZ A P Review of z-pinned composite laminates[J]. Composites Part A, 2007, 38: 2383- 2397
doi: 10.1016/j.compositesa.2007.08.016
[6]   MOURITZ A P Review of z-pinned laminates and sandwich composites[J]. Composites Part A, 2020, 139: 106128
doi: 10.1016/j.compositesa.2020.106128
[7]   WARZOK F, ALLEGRI G, GUDE M, et al Experimental study of Z-pin fatigue; understanding of mode I and II coupon behavior[J]. Composites Part A, 2019, 127: 105615
doi: 10.1016/j.compositesa.2019.105615
[8]   RAVINDRANA A R, LADANIA R B, WANG C H, et al Hierarchical mode I and mode II interlaminar toughening of Z-pinned composites using 1D and 2D carbon nanofillers[J]. Composites Part A, 2019, 124: 105470
doi: 10.1016/j.compositesa.2019.05.038
[9]   M'MEMBE B, YASAEE M, HALLETT S R, et al Effective use of metallic Z-pins for composites’ through-thickness reinforcement[J]. Composites Science and Technology, 2019, 175: 77- 84
doi: 10.1016/j.compscitech.2019.02.024
[10]   HOFFMANN J, SCHARR G Mechanical properties of composite laminates reinforced with rectangular z-pins in monotonic and cyclic tension[J]. Composites Part A, 2018, 109: 163- 170
doi: 10.1016/j.compositesa.2018.03.004
[11]   CHANG P, MOURITZ A P, COX B N Properties and failure mechanisms of pinned composite lap joints in monotonic and cyclic tension[J]. Composites Part A, 2006, 66: 2163- 2176
[12]   MOURITZ A P, CHANG P Tension fatigue of fibre-dominated and matrix-dominated laminates reinforced with z-pins[J]. International Journal of Fatigue, 2010, 32 (4): 650- 658
doi: 10.1016/j.ijfatigue.2009.09.001
[13]   COX B N, DADKHAH M S, INMAN R V, et al Mechanisms of compressive failure in 3D composites[J]. Acta Metallurgica et Materialia, 1992, 40 (12): 3285- 3298
doi: 10.1016/0956-7151(92)90042-D
[14]   FARLEY G L, DICKINSON L C Removal of surface loop from stitched composites can improve compressive and composite-after-impact strengths[J]. Journal of Reinforced Plastics and Composites, 1992, 11: 633- 642
doi: 10.1177/073168449201100604
[15]   MOURITZ A P Compression properties of z-pinned composite laminates[J]. Composites Science and Technology, 2007, 67 (15/16): 3110- 3120
[16]   ISA M D, FEIH S, MOURITZ A P Compression fatigue properties of z-pinned quasi-isotropic carbon/epoxy laminate with barely visible impact damage[J]. Composite Structures, 2011, 93 (9): 2269- 2276
doi: 10.1016/j.compstruct.2011.03.015
[17]   HOFFMANN J, SCHARR G Compression properties of composite laminates reinforced with rectangular z-pins[J]. Composites Science and Technology, 2018, 167: 463- 469
doi: 10.1016/j.compscitech.2018.08.042
[18]   GONG B, OUYANG W, NARTEY M, et al Minimizing the in-plane damage of Z-pinned composite laminates via a pre-hole pin insertion process[J]. Composites Science and Technology, 2020, 200: 108413
doi: 10.1016/j.compscitech.2020.108413
[19]   CARTIE D R, LAFFAILLE J M, PARTRIDGE I K, et al Fatigue delamination behaviour of unidirectional carbon fibre/epoxy laminates reinforced by Z-fiber pinning[J]. Engineering Fracture Mechanics, 2009, 76: 2834- 2845
doi: 10.1016/j.engfracmech.2009.07.018
[20]   ZHANG A Y, LIU H Y, MOURITZ A P, et al Experimental study and computer simulation of z-pin reinforcement under cycle fatigue[J]. Composites Part A, 2008, 39: 406- 414
doi: 10.1016/j.compositesa.2007.09.006
[21]   PEGORIN F, PINGKARAWAT K, DAYNES S, et al Mode II interlaminar fatigue properties of z-pinned carbon fibre reinforced epoxy composites[J]. Composites Part A, 2014, 67: 8- 15
doi: 10.1016/j.compositesa.2014.08.008
[22]   FEI S, WANG W, WANG H, et al Effect of Ø0.11 mm Z-pinning on the properties of composite laminates via an ultrasound guided insertion process[J]. Composites Science and Technology, 2021, 213: 108906
doi: 10.1016/j.compscitech.2021.108906
[23]   JI G, CHENG L, FEI S, et al A novel model of Z-pin insertion in prepreg based on fracture mechanics[J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2021, 4: 1- 12
[24]   曹凤国. 超声加工[M]. 北京: 化学工业出版社, 2014: 70-75.
[25]   李婧. 基于PZT-8纵向振动功率超声振子机电特性研究[D]. 太原: 中北大学, 2021: 73-74.
LI Jing. Mechanical and electrical characteristics of power ultrasonic vibrator based on PZT-8 longitudinal vibration [D]. Taiyuan: North University of China, 2021: 73-74.
[1] Zhe-he YAO,Cao-qi ZHANG,Qi-wei SONG,Xi-jiang LU,Jian-qiang KONG,Jian-hua YAO. Ultrasonic assisted laser repair of V-grooves in nickel-based superalloy[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(5): 887-895.
[2] LU Cun-Ti, WEI Yan-Ding, GUO Ji-Feng, et al. Self-driving linear ultrasonic motor with double vibrators[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1469-1472.