|
|
Overview of methods for evaluating accuracy of bioink extrusion bioprinting |
Ze-ning LIN( ),Tao JIANG*( ),Jian-zhong SHANG,Yun YANG,Yang HONG,Zi-rong LUO |
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract The principle of extrusion-based bioprinting with bioinks represented by hydrogels and the related mathematical model were introduced in order to improve the accuracy of extrusion-based 3D bioprinting structure. The factors affecting the printing accuracy were systematically analyzed in terms of structural design, bioink properties, bioprinting equipment and technological parameters, and the role of each parameter on the printing accuracy was summarized. The advantages and disadvantages of different methods were analyzed based on the dimensions of the parameters involved in the quantitative evaluation methods. Research ideas from simulation prediction, overcoming material mechanical behaviors and assisted printing were proposed, which provided references for the further development of the extrusion-based 3D bioprinting technology.
|
Received: 28 August 2022
Published: 21 April 2023
|
|
Fund: 国家自然科学基金资助项目(52105039);湖南省研究生科研创新资助项目(CX20220027);国防科技大学科研计划资助项目(ZK-19);国防科技大学智能科学学院青年骨干教师资助项目(4142Z6G2) |
Corresponding Authors:
Tao JIANG
E-mail: linzening@nudt.edu.cn;jiangtao@nudt.edu.cn
|
生物墨水挤出打印成型精度评价方法概述
为了推动挤压生物3D打印结构精度的提升,介绍了以水凝胶为代表的生物墨水挤压打印原理及相关数学模型. 针对打印精度的影响因素,从结构设计、生物墨水特性、打印设备及工艺参数三方面进行系统分析,总结各参数对打印精度的作用. 按照定量评价方法所涉及参数的维度归纳总结并分析不同方法的优缺点,从仿真预测、克服材料力学行为、辅助打印等方面提出研究思路,为后续挤压生物3D打印技术的进一步发展提供参考.
关键词:
挤压生物3D打印,
打印精度,
结构设计,
生物墨水特性,
工艺参数,
定量打印评价方法
|
|
[81] |
LIU S H, ZHANG H G, AHLFELD T, et al. Evaluation of different crosslinking methods in altering the properties of extrusion-printed chitosan-based multi-material hydrogel composites [EB/OL]. 2022-04-01. https://link.springer.com.article/10.1007/S42242-022-00194-3.
|
|
|
[82] |
NOWICKI M, ZHU W, SARKAR K, et al 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink[J]. Bioprinting, 2020, 17: e00066
doi: 10.1016/j.bprint.2019.e00066
|
|
|
[1] |
MEI Q, YUEN H Y, ZHAO X Mechanical stretching of 3D hydrogels for neural stem cell differentiation[J]. Bio-Design and Manufacturing, 2022, 5: 714- 728
doi: 10.1007/s42242-022-00209-z
|
|
|
[2] |
SCHäTZLEIN E, BLAESER A Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants[J]. Communications Biology, 2022, 5 (737): 1- 17
|
|
|
[3] |
RONZONI F L, ALIBERTI F, SCOCOZZA F, et al Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation[J]. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16: 484- 495
doi: 10.1002/term.3293
|
|
|
[4] |
FATIMI A, OKORO O V, PODSTAWCZYK D, et al Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review[J]. Gels, 2022, 8 (3): 1- 55
|
|
|
[5] |
付小兵, 黄沙. 生物3D打印与再生医学[M]. 武汉: 华中科技大学出版社, 2020.
|
|
|
[6] |
吴春亚, 吴佳昊, 吴喆冉, 等 生物3D打印技术的新研究进展[J]. 机械工程学报, 2021, 57 (5): 114- 132 WU Chun-ya, WU Jia-hao, WU Zhe-ran, et al New progress of biological 3D printing technology[J]. Journal of Mechanical Engineering, 2021, 57 (5): 114- 132
doi: 10.3901/JME.2021.05.114
|
|
|
[7] |
贺永, 高庆, 刘安, 等 生物3D打印——从形似到神似[J]. 浙江大学学报: 工学版, 2019, 53 (3): 407- 419 HE Yong, GAO Qing, LIU An, et al 3D bioprinting: from structure to function[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (3): 407- 419
|
|
|
[8] |
BIENIA M, LEJEUNE M, CHAMBON M, et al Inkjet printing of ceramic colloidal suspensions: filament growth and breakup[J]. Chemical Engineering Science, 2016, 149: 1- 13
doi: 10.1016/j.ces.2016.04.015
|
|
|
[9] |
MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
|
|
|
[10] |
白大鹏, 张洪, 李季杨 生物3D打印装置及打印模型形貌检测[J]. 浙江大学学报: 工学版, 2021, 55 (2): 289- 298 BAI Da-peng, ZHANG Hong, LI Ji-yang Biological 3D printer and topography detection of printing model[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (2): 289- 298
|
|
|
[11] |
CUI X L, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks [J]. Advanced Healthcare Materials, 2020, 9(15): 1901648.
|
|
|
[12] |
PLACONE J K, ENGLER A J. Recent advances in extrusion-based 3D printing for biomedical applications [J]. Advanced Healthcare Materials, 2018, 7(8): 1701161.
|
|
|
[13] |
IN Z B Y, LI Y R, YU K, et al. 3D printing of physical organ models: recent developments and challenges [J]. Advanced Science, 2021, 8(17): 2101394.
|
|
|
[14] |
毛宏理, 顾忠伟 生物3D打印高分子材料发展现状与趋势[J]. 中国材料进展, 2018, 37 (12): 949- 969 MAO Hong-li, GU Zhong-wei Polymers in 3D bioprinting: progress and challenges[J]. Materials China, 2018, 37 (12): 949- 969
|
|
|
[15] |
朱敏, 黄婷, 杜晓宇, 等 生物材料的3D打印研究进展[J]. 上海理工大学学报, 2017, 39 (5): 473- 483 ZHU Min, HUANG Ting, DU Xiao-yu, et al Progress of the 3D printing technology for biomaterials[J]. Journal of University of Shanghai for Science and Technology, 2017, 39 (5): 473- 483
|
|
|
[16] |
SOMASEKHAR L, HUYNH N D, VECHECK A, et al Three-dimensional printing of cell-laden microporous constructs using blended bioinks[J]. Journal of Biomedical Materials Research Part A, 2022, 110 (3): 535- 546
doi: 10.1002/jbm.a.37303
|
|
|
[17] |
OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
|
|
|
[18] |
GLEADALL A, VISSCHER D, YANG J, et al Review of additive manufactured tissue engineering scaffolds: relationship between geometry and performance[J]. Burns and Trauma, 2018, 6 (19): 025020
|
|
|
[19] |
ZHOU K, SUN Y D, YANG J Q, et al Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths[J]. Journal of Materials Chemistry B, 2022, 10 (12): 1897- 1907
doi: 10.1039/D1TB02554F
|
|
|
[20] |
WANG Y, YUAN X, YAO B, et al Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing[J]. Bioactive Materials, 2022, 17: 178- 194
doi: 10.1016/j.bioactmat.2022.01.024
|
|
|
[21] |
CHOE R, DEVOY E, KUZEMCHAK B, et al Computational investigation of interface printing patterns within 3D printed multilayered scaffolds for osteochondral tissue engineering[J]. Biofabrication, 2022, 14 (2): 025015
doi: 10.1088/1758-5090/ac5220
|
|
|
[22] |
CIDONIO G, GLINKA M, DAWSON J I, et al The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine[J]. Biomaterials, 2019, 209: 10- 24
doi: 10.1016/j.biomaterials.2019.04.009
|
|
|
[23] |
ANAND R, AMOLI M S, HUYSECOM A-S, et al A tunable gelatin-hyaluronan dialdehyde/methacryloyl gelatin interpenetrating polymer network hydrogel for additive tissue manufacturing[J]. Biomedical Materials, 2022, 17 (4): 045027
doi: 10.1088/1748-605X/ac78b8
|
|
|
[24] |
BOONLAI W, HIRUN N, SUKNUNTHA K, et al. Development and characterization of pluronic F127 and methylcellulose based hydrogels for 3D bioprinting [EB/OL]. (2022-04-28). https://link.springer.com/article/10.1007/s00289-022-04271-6.
|
|
|
[25] |
SONG S, LIU X, HUANG J, et al Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation[J]. Biomaterials Advances, 2022, 133: 112639
doi: 10.1016/j.msec.2021.112639
|
|
|
[26] |
SU H, LI Q, LI D, et al A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J]. Materials Horizons, 2022, 9 (9): 2393- 2407
doi: 10.1039/D2MH00314G
|
|
|
[27] |
DATTA P, VYAS V, DHARA S, et al Anisotropy properties of tissues: a basis for fabrication of biomimetic anisotropic scaffolds for tissue engineering[J]. Journal of Bionic Engineering, 2019, 16 (5): 842- 868
doi: 10.1007/s42235-019-0101-9
|
|
|
[28] |
SCHWAB A, LEVATO R, D'ESTE M, et al Printability and shape fidelity of bioinks in 3D bioprinting[J]. Chemical Reviews, 2020, 120 (19): 10850- 10877
|
|
|
[29] |
KYLE S, JESSOP Z M, AL-SABAH A, et al ‘Printability’ of candidate biomaterials for extrusion based 3D printing: state-of-the-art[J]. Advanced Healthcare Materials, 2017, 6 (16): 1700264
doi: 10.1002/adhm.201700264
|
|
|
[30] |
马爱洁, 杨晶晶, 陈卫星. 聚合物流变学基础[M]. 北京: 化学工业出版社, 2018.
|
|
|
[31] |
JIANG T, MUNGUIA-LOPEZ J G, FLORES-TORRES S, et al Extrusion bioprinting of soft materials: an emerging technique for biological model fabrication[J]. Applied Physics Reviews, 2019, 6 (1): 011310
doi: 10.1063/1.5059393
|
|
|
[32] |
PAXTON N, SMOLAN W, BOCK T, et al Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability[J]. Biofabrication, 2017, 9 (4): 044107
doi: 10.1088/1758-5090/aa8dd8
|
|
|
[33] |
吴其晔, 巫静安. 高分子材料流变学[M]. 北京: 高等教育出版社, 2014.
|
|
|
[34] |
COGSWELL F N Converging flow of polymer melts in extrusion dies[J]. Polymer Engineering and Science, 1972, 12 (1): 64- 73
|
|
|
[35] |
SNELLING G R, LONTZ J F Mechanism of lubricant-extrusion of teflon tfe-tetrafluoroethylene resins[J]. Journal of Applied Polymer Science, 1960, 3 (9): 257- 265
doi: 10.1002/app.1960.070030901
|
|
|
[36] |
BENBOW J J The dependence of output rate on die shape during catalyst extrusion[J]. Chemical Engineering Science, 1971, 26 (9): 1467- 1473
doi: 10.1016/0009-2509(71)80066-0
|
|
|
[37] |
BENBOW J J, OXLEY E W, BRIDGWATER J The extrusion mechanics of pastes: the influence of paste formulation on extrusion parameters[J]. Chemical Engineering Science, 1987, 42 (9): 2151- 2162
doi: 10.1016/0009-2509(87)85036-4
|
|
|
[38] |
BENBOW J J, JAZAYERI S H, BRIDGWATER J The flow of pastes through dies of complicated geometry[J]. Powder Technology, 1991, 65 (1): 393- 401
|
|
|
[39] |
TALLURI D J S, NGUYEN H T, AVAZMOHAMMADI R, et al Ink rheology regulates stability of bioprinted strands[J]. Journal of Biomechanical, 2022, 144 (7): 074503
doi: 10.1115/1.4053404
|
|
|
[40] |
LIN S, LI B, YANG L, et al New method for reducing viscosity and shear stress in hydrogel 3D printing via multidimension vibration[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2022, 25 (16): 1796- 1811
doi: 10.1080/10255842.2022.2039129
|
|
|
[41] |
FANG Y, GUO Y, LIU T, et al Advances in 3D bioprinting[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1 (1): 100011
doi: 10.1016/j.cjmeam.2022.100011
|
|
|
[42] |
顾亚伟, 李牧, 范子文, 等 3D挤压成型生物打印含细胞水凝胶的理化性能[J]. 中国组织工程研究, 2018, 22 (22): 3583- 3588 GU Ya-wei, LI Mu, FAN Zi-wen, et al Physical and chemical properties of 3D extrusive bioprinting cell-encapsulated hydrogel[J]. Chinese Journal of Tissue Engineering Research, 2018, 22 (22): 3583- 3588
doi: 10.3969/j.issn.2095-4344.0746
|
|
|
[43] |
LEE S C, GILLISPIE G, PRIM P, et al Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks[J]. Chemical Reviews, 2020, 120 (19): 10797- 10849
|
|
|
[44] |
尚建忠, 蒋涛, 唐力, 等 可移植人体外耳支架的3D打印关键技术[J]. 国防科技大学学报, 2016, 38(1): 175-180. SHANG Jian-zhong, JIANG Tao, TANG Li, et al. Key technology of transplantable human auricular scaffold based on 3D printing [J]. Journal of National University of Defense Technology, 2016, 38(1): 175-180.
|
|
|
[45] |
LEE J W, AHN G, KIM J Y, et al Evaluating cell proliferation based on internal pore size and 3D scaffold architecture fabricated using solid freeform fabrication technology[J]. Journal of Materials Science-Materials in Medicine, 2010, 21 (12): 3195- 3205
doi: 10.1007/s10856-010-4173-7
|
|
|
[46] |
SOBRAL J M, CARIDADE S G, SOUSA R A, et al Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency[J]. Acta Biomaterialia, 2011, 7 (3): 1009- 1018
doi: 10.1016/j.actbio.2010.11.003
|
|
|
[47] |
HABIB A, SATHISH V, MALLIK S, et al 3D printability of alginate-carboxymethyl cellulose hydrogel[J]. Materials, 2018, 11 (3): 454
doi: 10.3390/ma11030454
|
|
|
[48] |
DRAVID A, MCCAUGHEY-CHAPMAN A, RAOS B, et al Development of agarose–gelatin bioinks for extrusion-based bioprinting and cell encapsulation[J]. Biomedical Materials, 2022, 17 (5): 055001
doi: 10.1088/1748-605X/ac759f
|
|
|
[49] |
NAGAHARA M H T, DECARLI M C, NETO P I, et al Crosslinked alginate-xanthan gum blends as effective hydrogels for 3D bioprinting of biological tissues[J]. Journal of Applied Polymer Science, 2022, 139 (28): e52612
|
|
|
[50] |
OUYANG L Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting[J]. Trends in Biotechnology, 2022, 40 (7): 891- 902
doi: 10.1016/j.tibtech.2022.01.001
|
|
|
[51] |
CHIMENE D, KAUNAS R, GAHARWAR A K Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies[J]. Advanced Materials, 2020, 32 (1): e1902026
doi: 10.1002/adma.201902026
|
|
|
[52] |
BLAESER A, DUARTE CAMPOS D F, PUSTER U, et al Controlling shear stress in 3D bioprinting is a key factor to balance printing resolution and stem cell integrity[J]. Advanced Healthcare Materials, 2016, 5 (3): 326- 333
doi: 10.1002/adhm.201500677
|
|
|
[53] |
CUI Y, JIN R, ZHANG Y, et al Cellulose nanocrystal-enhanced thermal-sensitive hydrogels of block copolymers for 3D bioprinting[J]. International Journal of Bioprinting, 2021, 7 (4): 112- 122
doi: 10.18063/ijb.v7i4.397
|
|
|
[54] |
RAMIREZ CABALLERO S S, SAIZ E, MONTEMBAULT A, et al 3-D printing of chitosan-calcium phosphate inks: rheology, interactions and characterization[J]. Journal of Materials Science: Materials in Medicine, 2018, 30 (1): 1- 6
|
|
|
[55] |
XU H H K, WANG P, WANG L, et al Calcium phosphate cements for bone engineering and their biological properties[J]. Bone Research, 2017, 5 (1): 17056
doi: 10.1038/boneres.2017.56
|
|
|
[56] |
JI S, GUVENDIREN M Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5: 23
|
|
|
[57] |
MOUSER V H M, MELCHELS F P W, VISSER J, et al Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting[J]. Biofabrication, 2016, 8 (3): 035003
doi: 10.1088/1758-5090/8/3/035003
|
|
|
[58] |
KIM M H, LEE Y W, JUNG W K, et al Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 98: 187- 194
doi: 10.1016/j.jmbbm.2019.06.014
|
|
|
[59] |
SCHWARTZ R, MALPICA M, THOMPSON G L, et al Cell encapsulation in gelatin bioink impairs 3D bioprinting resolution[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103: 103524
doi: 10.1016/j.jmbbm.2019.103524
|
|
|
[60] |
SKARDAL A, ZHANG J, PRESTWICH G D Bioprinting vessel-like constructs using hyaluronan hydrogels crosslinked with tetrahedral polyethylene glycol tetracrylates[J]. Biomaterials, 2010, 31 (24): 6173- 6181
doi: 10.1016/j.biomaterials.2010.04.045
|
|
|
[61] |
董兰兰, 李亘, 熊胤泽, 等 GelMA/LPN/MC水凝胶的挤出式3D打印工艺与性能研究[J]. 机械工程学报, 2022, 58 (9): 283- 290 DONG Lan-lan, LI Gen, XIONG Yin-ze, et al Extrusion 3D printing processes and performance evaluation of GelMA/LPN/MC hydrogel[J]. Journal of Mechanical Engineering, 2022, 58 (9): 283- 290
doi: 10.3901/JME.2022.09.283
|
|
|
[62] |
顾恒, 连芩, 王慧超, 等 GelMA复合凝胶的挤出式3D打印工艺及其性能研究[J]. 机械工程学报, 2020, 56 (1): 196- 204 GU Heng, LIAN Qin, WANG Hui-chao, et al Extrusion 3D printing processes and performance evaluation of GelMA composite hydrogel[J]. Journal of Mechanical Engineering, 2020, 56 (1): 196- 204
doi: 10.3901/JME.2020.01.196
|
|
|
[63] |
NAGHIEH S, CHEN D Printability: a key issue in extrusion-based bioprinting[J]. Journal of Pharmaceutical Analysis, 2021, 11 (5): 564- 579
doi: 10.1016/j.jpha.2021.02.001
|
|
|
[64] |
LIN Z N, JIANG T, KINSELLA J M, et al Assessing roughness of extrusion printed soft materials using a semi-quantitative method[J]. Materials Letters, 2021, 303: 4
|
|
|
[65] |
HE Y, YANG F, ZHAO H, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6 (1): 29977
doi: 10.1038/srep29977
|
|
|
[66] |
KHODA A K M, OZBOLAT I T, KOC B A functionally gradient variational porosity architecture for hollowed scaffolds fabrication[J]. Biofabrication, 2011, 3 (3): 034106
doi: 10.1088/1758-5082/3/3/034106
|
|
|
[67] |
CUTOLO A, NEIRINCK B, LIETAERT K, et al Influence of layer thickness and post-process treatments on the fatigue properties of CoCr scaffolds produced by laser powder bed fusion[J]. Additive Manufacturing, 2018, 23: 498- 504
doi: 10.1016/j.addma.2018.07.008
|
|
|
[68] |
RUIZ-CANTU L, GLEADALL A, FARIS C, et al Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing[J]. Biofabrication, 2016, 8 (1): 015016
doi: 10.1088/1758-5090/8/1/015016
|
|
|
[69] |
HINTON T J, JALLERAT Q, PALCHESKO R, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science Advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
|
|
|
[70] |
MALEKPOUR A, CHEN X Printability and cell viability in extrusion-based bioprinting from experimental, computational, and machine learning views[J]. Journal of Functional Biomaterials, 2022, 13 (2): 40
doi: 10.3390/jfb13020040
|
|
|
[71] |
JIN Z, ZHANG Z, SHAO X, et al. Monitoring anomalies in 3D bioprinting with deep neural networks [EB/OL]. 2021-04-21. https://pubs.acs.org/doi/10.1021/acsbiomaterials.0c01761.
|
|
|
[72] |
RUBERU K, SENADEERA M, RANA S, et al. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing [J]. Applied Materials Today, 2021, 22: 100914.
|
|
|
[73] |
LEPPINIEMI J, LAHTINEN P, PAAJANEN A, et al 3D-printable bioactivated nanocellulose–alginate hydrogels[J]. ACS Applied Materials and Interfaces, 2017, 9 (26): 21959- 21970
doi: 10.1021/acsami.7b02756
|
|
|
[74] |
BILLIET T, GEVAERT E, DE SCHRYVER T, et al The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability[J]. Biomaterials, 2014, 35 (1): 49- 62
doi: 10.1016/j.biomaterials.2013.09.078
|
|
|
[75] |
SOLTAN N, NING L, MOHABATPOUR F, et al Printability and cell viability in bioprinting alginate dialdehyde-gelatin scaffolds[J]. ACS Biomaterials Science and Engineering, 2019, 5 (6): 2976- 2987
|
|
|
[76] |
BEDNARZIG V, SCHRUFER S, SCHNEIDER T C, et al Improved 3D printing and cell biology characterization of inorganic-filler containing alginate-based composites for bone regeneration: particle shape and effective surface area are the dominant factors for printing performance[J]. International Journal of Molecular Sciences, 2022, 23 (9): 4750
doi: 10.3390/ijms23094750
|
|
|
[77] |
OUYANG L L, YAO R, ZHAO Y, et al Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells[J]. Biofabrication, 2016, 8 (3): 035020
doi: 10.1088/1758-5090/8/3/035020
|
|
|
[78] |
DISTLER T, POLLEY C, SHI F, et al Electrically conductive and 3D-printable oxidized alginate-gelatin polypyrrole: PSS hydrogels for tissue engineering[J]. Advanced Healthcare Materials, 2021, 10 (9): e2001876
doi: 10.1002/adhm.202001876
|
|
|
[79] |
GIUSEPPE M D, LAW N, WEBB B, et al Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 79: 150- 157
doi: 10.1016/j.jmbbm.2017.12.018
|
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|