Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2023, Vol. 57 Issue (9): 1718-1726    DOI: 10.3785/j.issn.1008-973X.2023.09.003
    
Experimental study on hysteretic behavior of composite slab and cast-in-situ beam with different connection modes
Jia-run ZHENG1(),Ming-shan ZHANG2,3,*(),Ben-yue LI2,3,Quan-biao XU2,3,Shun-feng GONG1
1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China
2. Architectural Design & Research Institute of Zhejiang University Limited Company, Hangzhou 310028, China
3. Center for Balance Architecture, Zhejiang University, Hangzhou 310028, China
Download: HTML     PDF(4511KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A connection mode using oblique reinforcements between precast bottom plate and cast-in-situ beam was proposed, in order to improve the on-site construction efficiency and the connection performance of the precast bottom plates in composite slabs and cast-in-situ beams. Through the low reversed cyclic loading tests on composite slab and cast-in-situ beam specimens using four different connection modes, the hysteretic behaviors of composite slab and cast-in-situ beam specimens such as crack development and distribution, hysteretic characteristics, skeleton curves, ductility, stiffness degradation and energy dissipation capacity were comparatively analyzed. The influences of four different connection modes using extended steel bars, oblique reinforcements, steel bars laid on the combined surfaces and steel bars in grooves on the hysteretic behaviors of the composite slab and cast-in-situ beam specimens were studied. Results show that the hysteretic behaviors of the specimens using oblique reinforcement connection are basically similar to those of the specimens using conventionally extended steel bar connection. The positive bearing capacity of the specimens using steel bar laid on the combined surfaces is large, while the reverse bearing capacity is small, and the asymmetry of the positive and reverse bearing capacity of the specimens the connection mode is more significant compared to the specimens using the other connection modes other connection methods. The bearing capacity, the ductility and the energy dissipation capacity of the specimens using reinforcing bars in grooves connection are better than those of the specimens using extended steel bars and oblique reinforcements connection. The shear span ratio has less influence on the bearing capacity of the specimens using extended steel bars connection and the specimens using oblique reinforcements connection but has greater influence on the reverse ductility coefficient of the specimens using oblique reinforcements connection.



Key wordscomposite slab      cast-in-situ beam      connection mode      extended steel bar connection      oblique reinforcement connection      steel bar laid on combined surface connection      steel bars in grooves connection      hysteretic behavior     
Received: 22 November 2022      Published: 16 October 2023
CLC:  TU 375  
Fund:  浙江省重点研发计划资助项目(2018C03033-1);住房和城乡建设部科技资助项目(2021-k-052)
Corresponding Authors: Ming-shan ZHANG     E-mail: 626452995@qq.com;zhangms@zuadr.com
Cite this article:

Jia-run ZHENG,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on hysteretic behavior of composite slab and cast-in-situ beam with different connection modes. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1718-1726.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2023.09.003     OR     https://www.zjujournals.com/eng/Y2023/V57/I9/1718


不同连接方式叠合板-现浇梁滞回性能试验研究

为了提高叠合板中预制底板与现浇梁的现场施工效率和连接性能,提出预制底板与现浇梁的斜插筋连接方式. 通过对4种不同连接方式的叠合板-现浇梁试件进行低周往复加载试验,对比分析叠合板-现浇梁试件的裂缝开展及分布、滞回特性、骨架曲线、延性、刚度退化和耗能能力等滞回性能,研究采用出筋、斜插筋、叠合面钢筋和凹槽钢筋4种连接方式对叠合板-现浇梁试件滞回性能的影响. 结果表明:采用斜插筋连接的试件滞回性能与采用传统出筋连接的试件滞回性能基本相似;采用叠合面钢筋搭接的试件正向承载力较大,反向承载力较小,该连接方式试件的正、反向承载力相比其他连接方式试件的不对称性更显著;采用凹槽钢筋连接的试件承载能力、延性、耗能能力均优于采用出筋和斜插筋连接的试件;剪跨比对采用出筋连接和斜插筋连接的试件承载力影响较小,对采用斜插筋连接的试件反向延性系数影响较大.


关键词: 叠合板,  现浇梁,  连接方式,  出筋连接,  斜插筋连接,  叠合面钢筋连接,  凹槽钢筋连接,  滞回性能 
Fig.1 Schematic diagram of dimensiones and reinforcements in specimens
试件编号 连接方式 L/mm 连接钢筋 试件编号 连接方式 L/mm 连接钢筋
A1 板端出筋连接 1 100 5 10@200 C1 板端斜插筋连接 1 100 3 12@400
A2 板端出筋连接 700 5 10@200 C2 板端斜插筋连接 700 3 12@400
A3 板端出筋连接 400 5 10@200 C3 板端斜插筋连接 400 3 12@400
B1 板端斜插筋连接 1 100 5 10@200 D1 叠合面钢筋搭接 1 100 5 8@200
B2 板端斜插筋连接 700 5 10@200 E1 凹槽钢筋连接 1 100 5 10@200
B3 板端斜插筋连接 400 5 10@200 —— —— —— ——
Tab.1 Geometric dimensions and reinforcements of specimens
规格 Es/GPa fy/MPa fu/MPa Agt/%
8 204.2 460.0 594.4 14.0
10 202.9 495.1 687.6 13.8
12 197.8 435.2 604.1 17.5
Tab.2 Mechanical parameters of steel bars
Fig.2 Stress-strain curves of steel bars
Fig.3 Loading device diagram of hysteretic test for specimens
Fig.4 Loading history diagram of hysteretic test for specimens
Fig.5 Failure patterns of extended steel bars specimens
Fig.6 Failure patterns of oblique reinforcements specimens
Fig.7 Failure patterns of two types of steel specimens
Fig.8 Moment-drift ratio hysteretic curves of specimens
Fig.9 Skeleton curves of moment-drift ratio for specimens
试件
规格
加载
方向
My/
(kN·m)
?y Mmax/
(kN·m)
?max ?u μ
A1 (+) +16.8 +0.010 +19.6 +0.030
A1 (?) ?12.0 ?0.013 ?14.0 ?0.018 ?0.031 2.40
A2 (+) +17.1 +0.008 +20.1 +0.027
A2 (?) ?11.6 ?0.010 ?13.8 ?0.020 ?0.029 2.78
A3 (+) +18.2 +0.011 +20.6 +0.024
A3 (?) ?13.1 ?0.007 ?14.8 ?0.018 ?0.033 4.70
B1 (+) +16.9 +0.007 +20.3 +0.015
B1 (?) ?12.8 ?0.009 ?15.0 ?0.015 ?0.019 2.17
B2 (+) +14.2 +0.006 +19.8 +0.020
B2 (?) ?12.3 ?0.007 ?14.7 ?0.020 ?0.040 5.63
B3 (+) +19.0 +0.009 +22.1 +0.020
B3 (?) ?12.7 ?0.007 ?15.2 ?0.020 ?0.044 6.29
C1 (+) +18.0 +0.009 +21.0 +0.030
C1 (?) ?11.1 ?0.007 ?13.5 ?0.015 ?0.028 3.95
C2 (+) +18.8 +0.009 +21.2 +0.020
C2 (?) ?10.5 ?0.007 ?12.7 ?0.020 ?0.029 4.12
C3 (+) +20.0 +0.010 +21.3 +0.015
C3 (?) ?11.7 ?0.007 ?13.7 ?0.010 ?0.063 8.70
D1 (+) +27.4 +0.012 +31.7 +0.040
D1 (?) ?8.6 ?0.014 ?9.5 ?0.020
E1 (+) +17.1 +0.008 +20.3 +0.020 +0.054 6.81
E1 (?) ?14.5 ?0.010 ?16.5 ?0.025 ?0.051 4.82
Tab.3 Moment and drift ratio at characteristic points of specimens
Fig.10 Stiffness degradation curves of specimens
Fig.11 Equivalent viscous damping coefficient curves of specimens
[1]   侯和涛, 代春雪, 王文豪, 等 钢筋连接方式对叠合板抗弯性能影响研究[J]. 建筑结构, 2020, 50 (2): 61- 66
HOU He-tao, DAI Chun-xue, WANG Wen-hao, et al Study on influence of reinforcement connection method on flexural performance of composite slabs[J]. Building Structure, 2020, 50 (2): 61- 66
doi: 10.19701/j.jzjg.2020.02.011
[2]   刘文政, 崔士起, 刘传卿, 等 预应力混凝土钢桁架叠合板受弯性能试验与理论研究[J]. 建筑结构学报, 2021, 42 (8): 95- 106
LIU Wen-zheng, CUI Shi-qi, LIU Chuan-qing, et al Experimental and theoretical study on bending behavior of prestressed concrete composite slabs with steel trusses[J]. Journal of Building Structures, 2021, 42 (8): 95- 106
doi: 10.14006/j.jzjgxb.2019.0289
[3]   郭伟宾. PK预应力混凝土叠合楼盖梁板节点的试验研究与分析[D]. 长沙: 湖南大学, 2015.
GUO Wei-bin. Experimental study and analysis on the beam-plate joints of PK prestressed concrete composite floor system [D]. Changsha: Hunan University, 2015.
[4]   唐宇轩. 一种新型装配式混凝土梁-板结构体系的力学性能研究[D]. 广州: 华南理工大学, 2017.
TANG Yu-xuan. Study on mechanical properties of a new type of prefabricated reinforced concrete beam-slab structure system [D]. Guangzhou: South China University of Technology, 2017.
[5]   邓宇, 武晓彤, 吴贤情, 等 新型装配整体式梁板节点受力性能试验研究[J]. 科学技术与工程, 2019, 19 (9): 167- 172
DENG Yu, WU Xiao-tong, WU Xian-qing, et al Experimental study on mechanical properties of new type prefabricated beam-board joints[J]. Science Technology and Engineering, 2019, 19 (9): 167- 172
doi: 10.3969/j.issn.1671-1815.2019.09.027
[6]   吴波, 郭富康, 聂良珍, 等 预制再生块体混凝土板-梁连接的受弯性能研究及其工程应用[J]. 建筑结构学报, 2020, 41 (12): 75- 84
WU Bo, GUO Fu-kang, NIE Liang-zhen, et al Flexural behavior of prefabricated recycled lump concrete slab-beam assembly and its engineering application[J]. Journal of Building Structures, 2020, 41 (12): 75- 84
doi: 10.14006/j.jzjgxb.2020.0203
[7]   TOHIDI M, BANIOTOPOULOS C Effect of floor joint design on catenary actions of precast floor slab system[J]. Engineering Structures, 2017, 152: 274- 288
doi: 10.1016/j.engstruct.2017.09.017
[8]   DERYSZ J, LEWIŃSKI P M, WIĘCH P P New concept of composite steel-reinforced concrete floor slab in the light of computational model and experimental research[J]. Procedia Engineering, 2017, 193: 168- 175
doi: 10.1016/j.proeng.2017.06.200
[9]   QIAN K, LI B Performance of precast concrete substructures with dry connections to resist progressive collapse[J]. Journal of Performance of Constructed Facilities, 2018, 32 (2): 04018005
doi: 10.1061/(ASCE)CF.1943-5509.0001147
[10]   中华人民共和国住房和城乡建设部. 装配式混凝土结构技术规程: JGJ 1—2014 [S]. 北京: 中国建筑工业出版社, 2014.
[11]   中华人民共和国住房和城乡建设部. 混凝土结构设计规范: GB 50010—2010 [S]. 北京: 中国建筑工业出版社, 2010.
[12]   中华人民共和国住房和城乡建设部. 建筑抗震试验规程: JGJ/T 101—2015 [S]. 北京: 中国建筑工业出版社, 2015.
[13]   张勤, 朱潇鹏, 顾祥林, 等 纤维网增强水泥基复合材料加固低延性RC柱抗震性能研究[J]. 建筑结构学报, 2022, 43 (12): 49- 58
ZHANG Qin, ZHU Xiao-peng, GU Xiang-lin, et al Study on seismic behavior of low ductility RC columns strengthened with textile reinforced concrete composites[J]. Journal of Building Structures, 2022, 43 (12): 49- 58
[1] Tong XIAO,Ming-shan ZHANG,Ben-yue LI,Quan-biao XU,Shun-feng GONG. Experimental study on flexural performance of composite slab with groove splicing joint[J]. Journal of ZheJiang University (Engineering Science), 2023, 57(4): 842-854.
[2] Bin LUO,Wei HUANG,Xiang MA,Bin LI,Wen-cai ZHOU,Shan-shan REN. Flexural behavior of sandwich composite panels with core material of expanded polystyrene thermal insulation motar[J]. Journal of ZheJiang University (Engineering Science), 2019, 53(11): 2185-2196.
[3] LIAO Zi-nan, SHAO Xu-dong, QIAO Qiu-heng, CAO Jun-hui, LIU Xiang-ning. Static test and finite element simulation analysis of transverse bending of steel-ultra-high performance concrete composite slabs[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(10): 1954-1963.