土木与交通工程 |
|
|
|
|
多分辨率趋势周期解耦交互的交通流预测 |
侯越( ),王甜甜,张鑫,尹杰 |
兰州交通大学 电子与信息工程学院,甘肃 兰州 730070 |
|
Traffic flow forecasting with multi-resolution trend period decoupling interaction |
Yue HOU( ),Tiantian WANG,Xin ZHANG,Jie YIN |
School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China |
引用本文:
侯越,王甜甜,张鑫,尹杰. 多分辨率趋势周期解耦交互的交通流预测[J]. 浙江大学学报(工学版), 2025, 59(7): 1362-1372.
Yue HOU,Tiantian WANG,Xin ZHANG,Jie YIN. Traffic flow forecasting with multi-resolution trend period decoupling interaction. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1362-1372.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.004
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1362
|
1 |
崔建勋, 要甲, 赵泊媛 基于深度学习的短期交通流预测方法综述[J]. 交通运输工程学报, 2024, 24 (2): 50- 64 CUI Jianxun, YAO Jia, ZHAO Boyuan Review on short-term traffic flow prediction methods based on deep learning[J]. Journal of Traffic and Transportation Engineering, 2024, 24 (2): 50- 64
|
2 |
AHMED M S, COOK A R Analysis of freeway traffic time-series data by using box-jenkins techniques[J]. Transportation Research Record, 1979, (722): 1- 9
|
3 |
SMITH B L, DEMETSKY M J Traffic flow forecasting: comparison of modeling approaches[J]. Journal of Transportation Engineering, 1997, 123 (4): 261- 266
doi: 10.1061/(ASCE)0733-947X(1997)123:4(261)
|
4 |
TONG J, GU X, ZHANG M, et al. Traffic flow prediction based on improved SVR for VANET [C]// Proceedings of the 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering. Changsha: IEEE, 2021: 402–405.
|
5 |
CHENG S, LU F, PENG P, et al Short-term traffic forecasting: an adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186- 198
doi: 10.1016/j.compenvurbsys.2018.05.009
|
6 |
ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization [EB/OL]. (2015–02–19)[2024–07–01]. https://arxiv.org/pdf/1409.2329.
|
7 |
HOCHREITER S, SCHMIDHUBER J Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735- 1780
doi: 10.1162/neco.1997.9.8.1735
|
8 |
ZHANG R, SUN F, SONG Z, et al Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021 (1): 1338607
|
9 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [EB/OL]. (2023–08–02)[2024–07–01]. https://arxiv.org/pdf/1706.03762.
|
10 |
WANG H, PENG J, HUANG F, et al. MICN: multi-scale local and global context modeling for long-term series forecasting [C]// The Eleventh International Conference on Learning Representations. Kigali: [s. n.], 2023: 1–22.
|
11 |
ZHANG X, HUANG K, LIU C, et al. Urban short-term traffic flow prediction algorithm based on CNN-LSTM model [C]// Proceedings of the 3rd International Conference on Consumer Electronics and Computer Engineering. Guangzhou: IEEE, 2023: 214–217.
|
12 |
史昕, 曹凤腾, 纪艺, 等 基于多尺度时空特征与软注意力机制的交通流预测方法[J]. 计算机工程, 2024, 50 (12): 346- 357 SHI Xin, CAO Fengteng, JI Yi, et al Traffic flow prediction method based on multi-scale spatio-temporal features and soft attention mechanism[J]. Computer Engineering, 2024, 50 (12): 346- 357
|
13 |
WU H, HU T, LIU Y, et al. TimesNet: temporal 2D-variation modeling for general time series analysis [EB/OL]. (2023–04–12)[2024–07–01]. https://arxiv.org/pdf/2210.02186.
|
14 |
WANG X, WANG Z, YANG K, et al. MPPN: multi-resolution periodic pattern network for long-term time series forecasting [EB/OL]. (2023–06–12)[2024–07–01]. https://arxiv.org/pdf/2306.06895.
|
15 |
赵顗, 沈玲宏, 马健霄, 等 综合小波分解和BP神经网络的交通小区生成交通短时预测[J]. 重庆交通大学学报: 自然科学版, 2021, 40 (11): 60- 66 ZHAO Yi, SHEN Linghong, MA Jianxiao, et al Traffic short-term prediction generated by wavelet decomposition and BP neural network of traffic zone[J]. Journal of Chongqing Jiaotong University: Natural Science, 2021, 40 (11): 60- 66
|
16 |
SASAL L, CHAKRABORTY T, HADID A. W-Transformers: a wavelet-based transformer framework for univariate time series forecasting [C]// Proceedings of the 21st IEEE International Conference on Machine Learning and Applications. Nassau: IEEE, 2022: 671–676.
|
17 |
博格斯, 马科维奇. 小波与傅里叶分析基础[M]. 2版. 芮国胜, 康健, 译. 北京: 电子工业出版社, 2010: 173–194.
|
18 |
LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with Conv-LSTM [C]// Proceedings of the 9th International Conference on Wireless Communications and Signal Processing. Nanjing: IEEE, 2017: 1–6.
|
19 |
陈峰浩. 基于时空特征分析的多步交通流量预测研究[D]. 杭州: 浙江科技大学, 2024: 1–59. CHEN Fenghao. Research on multi-step traffic flow prediction based on spatio-temporal feature analysis [D]. Hangzhou: Zhejiang University of Science and Technology, 2024: 1–59.
|
20 |
COOLEY J W, TUKEY J W An algorithm for the machine calculation of complex Fourier series[J]. Mathematics of Computation, 1965, 19 (90): 297- 301
doi: 10.1090/S0025-5718-1965-0178586-1
|
21 |
FANG Y, QIN Y, LUO H, et al. When spatio-temporal meet wavelets: disentangled traffic forecasting via efficient spectral graph attention networks [C]// Proceedings of the IEEE 39th International Conference on Data Engineering. Anaheim: IEEE, 2023: 517–529.
|
22 |
HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770–778.
|
23 |
闫旭, 范晓亮, 郑传潘, 等 基于图卷积神经网络的城市交通态势预测算法[J]. 浙江大学学报: 工学版, 2020, 54 (6): 1147- 1155 YAN Xu, FAN Xiaoliang, ZHENG Chuanpan, et al Urban traffic flow prediction algorithm based on graph convolutional neural networks[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (6): 1147- 1155
|
24 |
SUN Y, ZHANG G, YIN H Passenger flow prediction of subway transfer stations based on nonparametric regression model[J]. Discrete Dynamics in Nature and Society, 2014, 2014 (1): 397154
|
25 |
LIVIERIS I E, PINTELAS E, PINTELAS P A CNN–LSTM model for gold price time-series forecasting[J]. Neural Computing and Applications, 2020, 32 (23): 17351- 17360
doi: 10.1007/s00521-020-04867-x
|
26 |
BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. (2018–04–19)[2024–07–01]. https://arxiv.org/pdf/1803.01271.
|
27 |
GUO S, LIN Y, FENG N, et al Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33 (1): 922- 929
doi: 10.1609/aaai.v33i01.3301922
|
28 |
LIU M, ZENG A, CHEN M, et al. SCINet: time series modeling and forecasting with sample convolution and interaction [C]// 36th Conference on Neural Information Processing Systems. New Orleans: [s. n.], 2022, 1–13.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|