生物医学工程 |
|
|
|
|
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期 |
朱炳洋1,2( ),吴建锋2,*( ),王柯2,3,王章权2,刘半藤2 |
1. 湖州师范学院 信息工程学院,浙江 湖州 313000 2. 浙江树人学院 信息科技学院,浙江 杭州 310015 3. 浙江大学 工业控制技术国家重点实验室,浙江 杭州 310027 |
|
Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model |
Bingyang ZHU1,2( ),Jianfeng WU2,*( ),Ke WANG2,3,Zhangquan WANG2,Banteng LIU2 |
1. School of Information Engineering, Huzhou University, Huzhou 313000, China 2. College of Information Science and Technology, Zhejiang Shuren University, Hangzhou 310015, China 3. State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China |
引用本文:
朱炳洋,吴建锋,王柯,王章权,刘半藤. 基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期[J]. 浙江大学学报(工学版), 2024, 58(12): 2547-2555.
Bingyang ZHU,Jianfeng WU,Ke WANG,Zhangquan WANG,Banteng LIU. Sleep staging based on single-channel ECG signal and INFO-ABCLogitBoost model. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2547-2555.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.014
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2547
|
1 |
PANDA S, HOGENESCH J B, KAY S A Circadian rhythms from flies to human[J]. Nature, 2002, 417 (6886): 329- 335
doi: 10.1038/417329a
|
2 |
SHOCHAT T Impact of lifestyle and technology developments on sleep[J]. Nature and Science of Sleep, 2012, 4 (6): 19- 31
|
3 |
KILLICK R, STRANKS L, HOYOS C M Sleep deficiency and cardiometabolic disease[J]. Clinics in Chest Medicine, 2022, 43 (2): 319- 336
doi: 10.1016/j.ccm.2022.02.011
|
4 |
BERRY R B, BROOKS R, GAMALDO C, et al AASM scoring manual updates for 2017 (version 2.4)[J]. Journal of Clinical Sleep Medicine, 2017, 13 (5): 665- 666
doi: 10.5664/jcsm.6576
|
5 |
MADOR M J, KUFEL T J, MAGALANG U J, et al Prevalence of positional sleep apnea in patients undergoing polysomnography[J]. Chest, 2005, 128 (4): 2130- 2137
doi: 10.1378/chest.128.4.2130
|
6 |
GULLETT N, ZAJKOWSKA Z, WALSH A, et al Heart rate variability (HRV) as a way to understand associations between the autonomic nervous system (ANS) and affective states: a critical review of the literature[J]. International Journal of Psychophysiology, 2023, 192 (5): 35- 42
|
7 |
GONZALES J U, ELAVSKY S, CIPRYAN L, et al Influence of sleep duration and sex on age-related differences in heart rate variability: findings from program 4 of the HAIE study[J]. Sleep Medicine, 2023, 106 (14): 69- 77
|
8 |
ERDENEBAYAR U, KIM Y, PARK J U, et al Automatic classification of sleep stage from an ecg signal using a gated-recurrent unit[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2020, 20 (3): 181- 187
doi: 10.5391/IJFIS.2020.20.3.181
|
9 |
RADHA M, FONSECA P, MOREAU A, et al Sleep stage classification from heart-rate variability using long short-term memory neural networks[J]. Scientific Reports, 2019, 9 (1): 14149
doi: 10.1038/s41598-019-49703-y
|
10 |
FONSECA P, VAN GILST M M, RADHA M, et al Automatic sleep staging using heart rate variability, body movements, and recurrent neural networks in a sleep disordered population[J]. Sleep, 2020, 43 (9): 48
|
11 |
GENG D Y, WANG J X, WANG Y, et al Convolutional neural network is a good technique for sleep staging based on HRV: a comparative analysis[J]. Neuroscience Letters, 2022, 779: 136550
doi: 10.1016/j.neulet.2022.136550
|
12 |
SUN H, GANGLBERGER W, PANNEERSELVAM E, et al Sleep staging from electrocardiography and respiration with deep learning[J]. Sleep, 2020, 43 (7): 306
doi: 10.1093/sleep/zsz306
|
13 |
WANG W B, QIN D, FANG Y, et al Automatic multi-class sleep staging method based on novel hybrid features[J]. Journal of Electrical Engineering and Technology, 2024, 19 (1): 709- 722
doi: 10.1007/s42835-023-01570-4
|
14 |
MATHUNJWA B M, LIN Y T, LIN C H, et al Automatic IHR-based sleep stage detection using features of residual neural network[J]. Biomedical Signal Processing and Control, 2023, 85: 105070
doi: 10.1016/j.bspc.2023.105070
|
15 |
CHAKRABORTY S, GOYAL M, GOYAL P, et al. A machine learning approach for automatic sleep staging using heart rate variability [EB/OL]. (2022-05-13)[2023-08-08]. https://www.biorxiv.org/content/10.1101/2022.05.13.491872v2.full.pdf.
|
16 |
SURANTHA N, LESMANA T F, ISA S M Sleep stage classification using extreme learning machine and particle swarm optimization for healthcare big data[J]. Journal of Big Data, 2021, 8 (1): 1- 17
doi: 10.1186/s40537-020-00387-6
|
17 |
彭向东, 潘从成, 柯泽浚, 等 基于并行架构和时空注意力机制的心电分类方法[J]. 浙江大学学报: 工学版, 2022, 56 (10): 1912- 1923 PENG Xiangdong, PAN Congcheng, KE Zejun, et al Classification method for electrocardiograph signals based on parallel architecture model and spatial-temporal attention mechanism[J]. Journal of Zhejiang University: Engineering Science, 2022, 56 (10): 1912- 1923
|
18 |
CHANDRA S, SHARMA A, SINGH G K Feature extraction of ECG signal[J]. Journal of Medical Engineering and Technology, 2018, 42 (4): 306- 316
doi: 10.1080/03091902.2018.1492039
|
19 |
张敏, 袁辉. 拉依达(PauTa)准则与异常值剔除[EB/OL]. [2023-10-01]. https://www.docin.com/p-773376606.html.
|
20 |
MENG F, ZHAO D, ZHANG X A fair consensus adjustment mechanism for large-scale group decision making in term of Gini coefficient[J]. Engineering Applications of Artificial Intelligence, 2023, 126 (23): 106962
|
21 |
ZHANG B, LI Y, CHAI Z A novel random multi-subspace based ReliefF for feature selection[J]. Knowledge-based Systems, 2022, 252 (12): 109400
|
22 |
LI P. Abc-boost: adaptive base class boost for multi-class classification [C] // Proceedings of the 26th Annual international conference on Machine Learning . New York: Association for Computing Machinery, 2009: 625-632.
|
23 |
PONOMAREVA N, COLTHURST T, HENDRY G, et al. Compact multi-class boosted trees [C] // 2017 IEEE International Conference on Big Data . Boston: IEEE, 2017: 47-56.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|