土木与交通工程 |
|
|
|
|
基于时序分解和软阈值时间卷积的交通流预测 |
项新建1( ),袁天顺1,何亚强2,汪成立2 |
1. 浙江科技大学 自动化与电气工程学院,浙江 杭州 310023 2. 浙江省交通运输科学研究院,浙江 杭州 310039 |
|
Traffic flow prediction based on time series decomposition and soft thresholding temporal convolution |
Xinjian XIANG1( ),Tianshun YUAN1,Yaqiang HE2,Chengli WANG2 |
1. School of Automation and Electrical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China 2. Zhejiang Scientific Research Institute of Transport, Hangzhou 310039, China |
引用本文:
项新建,袁天顺,何亚强,汪成立. 基于时序分解和软阈值时间卷积的交通流预测[J]. 浙江大学学报(工学版), 2025, 59(7): 1353-1361.
Xinjian XIANG,Tianshun YUAN,Yaqiang HE,Chengli WANG. Traffic flow prediction based on time series decomposition and soft thresholding temporal convolution. Journal of ZheJiang University (Engineering Science), 2025, 59(7): 1353-1361.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.07.003
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I7/1353
|
1 |
王殿海, 谢瑞, 蔡正义 基于最优汇集时间间隔的城市间断交通流预测[J]. 浙江大学学报: 工学版, 2023, 57 (8): 1607- 1617 WANG Dianhai, XIE Rui, CAI Zhengyi Prediction of urban interrupted traffic flow based on optimal convergence time interval[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (8): 1607- 1617
|
2 |
马飞, 杨治杰, 王江博, 等 基于气象-交通多通道数据融合的短时交通流速度预测模型[J]. 交通运输工程学报, 2024, 24 (6): 183- 196 MA Fei, YANG Zhijie, WANG Jiangbo, et al Short-term traffic flow velocity prediction model based on multi-channel data fusion of meteorological and traffic[J]. Journal of Traffic and Transportation Engineering, 2024, 24 (6): 183- 196
|
3 |
PRAVEEN KUMAR B, HARIHARAN K Time series traffic flow prediction with hyper-parameter optimized ARIMA models for intelligent transportation system[J]. Journal of Scientific and Industrial Research, 2022, 81 (4): 408- 415
|
4 |
ZHOU T, JIANG D, LIN Z, et al Hybrid dual Kalman filtering model for short-term traffic flow forecasting[J]. IET Intelligent Transport Systems, 2019, 13 (6): 1023- 1032
doi: 10.1049/iet-its.2018.5385
|
5 |
FANG W, ZHUO W, SONG Y, et al Δfree-LSTM: an error distribution free deep learning for short-term traffic flow forecasting[J]. Neurocomputing, 2023, 526: 180- 190
doi: 10.1016/j.neucom.2023.01.009
|
6 |
XIA D, CHEN Y, ZHANG W, et al RSAB-ConvGRU: a hybrid deep-learning method for traffic flow prediction[J]. Multimedia Tools and Applications, 2024, 83 (7): 20559- 20585
|
7 |
ZHANG R, SUN F, SONG Z, et al Short-term traffic flow forecasting model based on GA-TCN[J]. Journal of Advanced Transportation, 2021, 2021 (1): 1338607
|
8 |
BAO Y, HUANG J, SHEN Q, et al Spatial–temporal complex graph convolution network for traffic flow prediction[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106044
doi: 10.1016/j.engappai.2023.106044
|
9 |
ZHAO Q, LOU L, OUYANG B. Short-time traffic flow prediction based on a combined model of EMD and LSTM [C]// Proceedings of the 4th International Seminar on Artificial Intelligence, Networking and Information Technology. Nanjing: IEEE, 2023: 424–429.
|
10 |
QIN Y, WU C, HU Y Traffic flow prediction by an ensemble framework with data denoising and functional principal components analysis[J]. Transportation Research Record: Journal of the Transportation Research Board, 2024, 2678 (11): 929- 947
doi: 10.1177/03611981241242375
|
11 |
SAHA S, BARAL S, HAQUE A. Optimizing Internet traffic predictions with a novel deep learning EMD-KNN framework [C]// Proceedings of the International Wireless Communications and Mobile Computing. Ayia Napa: IEEE, 2024: 1382–1387.
|
12 |
邴其春, 张伟健, 沈富鑫, 等 基于变分模态分解和LSTM的短时交通流预测[J]. 重庆理工大学学报: 自然科学, 2023, 37 (5): 169- 177 BING Qichun, ZHANG Weijian, SHEN Fuxin, et al Short-term traffic flow prediction based on variational modal decomposition and LSTM[J]. Journal of Chongqing University of Technology: Natural Science, 2023, 37 (5): 169- 177
|
13 |
孔思琴 基于VMD-HSSA-BP神经网络模型的短时交通流预测[J]. 电子设计工程, 2024, 32 (10): 1- 7 KONG Siqin Short-term traffic flow prediction based on VMD-HSSA-BP neural network model[J]. Electronic Design Engineering, 2024, 32 (10): 1- 7
|
14 |
庞学丽, 宋坤, 姚红云, 等 基于VMD-ISSA-LSTM的短时交通流预测研究[J]. 现代电子技术, 2024, 47 (8): 31- 36 PANG Xueli, SONG Kun, YAO Hongyun, et al Research on short-term traffic flow prediction based on VMD-ISSA-LSTM[J]. Modern Electronics Technique, 2024, 47 (8): 31- 36
|
15 |
RAN P, DONG K, LIU X, et al Short-term load forecasting based on CEEMDAN and transformer[J]. Electric Power Systems Research, 2023, 214: 108885
doi: 10.1016/j.jpgr.2022.108885
|
16 |
夏进, 王正群, 朱世明 基于时间序列分解的交通流量预测模型[J]. 计算机应用, 2023, 43 (4): 1129- 1135 XIA Jin, WANG Zhengqun, ZHU Shiming Traffic flow prediction model based on time series decomposition[J]. Journal of Computer Applications, 2023, 43 (4): 1129- 1135
|
17 |
WEI J, WU X, YANG T, et al Ultra-short-term forecasting of wind power based on multi-task learning and LSTM[J]. International Journal of Electrical Power and Energy Systems, 2023, 149: 109073
|
18 |
BAI S, KOLTER J Z, KOLTUN V, et al. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling [EB/OL]. (2018−04−19)[2024−06−01]. https://arxiv.org/abs/1803.01271v2.
|
19 |
杨童亮, 胡东, 唐超, 等 基于SMA-VMD-GRU模型的变压器油中溶解气体含量预测[J]. 电工技术学报, 2023, 38 (1): 117- 130 YANG Tongliang, HU Dong, TANG Chao, et al Prediction of dissolved gas content in transformer oil based on SMA-VMD-GRU model[J]. Transactions of China Electrotechnical Society, 2023, 38 (1): 117- 130
|
20 |
王婧娟, 陈庆奎 一种时空注意力网络的交通预测模型[J]. 小型微型计算机系统, 2021, 42 (2): 303- 307 WANG Jingjuan, CHEN Qingkui Traffic prediction model based on spatiotemporal attention network[J]. Journal of Chinese Computer Systems, 2021, 42 (2): 303- 307
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|