计算机与控制工程 |
|
|
|
|
结合社交影响和长短期偏好的个性化推荐算法 |
周青松( ),蔡晓东*( ),刘家良 |
桂林电子科技大学 信息与通信学院,广西 桂林 541004 |
|
Personalized recommendation algorithm combining social influence and long short-term preference |
Qing-song ZHOU( ),Xiao-dong CAI*( ),Jia-liang LIU |
School of Information and Communication, Guilin University of Electronic Technology, Guilin 541004, China |
1 |
WANG S, CAO L, WANG Y, et al A survey on session-based recommender systems[J]. ACM Computing Surveys, 2022, 54 (7): 1- 38
|
2 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1511.06939.pdf.
|
3 |
MIKOLOV T, KARAFIAT M, BURGET L, et al. Recurrent neural network based language model [C]// Interspeech. Chiba: [s. n.], 2010: 1045-1048.
|
4 |
LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419-1428.
|
5 |
LIU Q, ZENG Y, MOKHOSI R, et al. STAMP: short-term attention/memory priority model for session-based recommendation [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 1831-1839.
|
6 |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks [EB/OL]. [2022-03-09]. https://arxiv.org/pdf/1609.02907.pdf.
|
7 |
HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs [C]// Proceedings of the 31st International Conference Neural Information Processing Systems. Long Beach: [s. n.], 2017: 1025-1035.
|
8 |
WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019: 346-353.
|
9 |
ZHANG Z, WANG B Fusion of latent categorical prediction and sequential prediction for session-based recommendation[J]. Information Sciences, 2021, 569: 125- 137
doi: 10.1016/j.ins.2021.04.019
|
10 |
CHEN T, WONG R C W. Handling information loss of graph neural networks for session-based recommendation [C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. [S. l.]: ACM, 2020: 1172-1180.
|
11 |
PANG Y, WU L, SHEN Q, et al. Heterogeneous global graph neural networks for personalized session-based recommendation [C]// Proceeding of the 15th ACM International Conference on Web Search and Data Mining. [S. l.]: ACM, 2022: 775-783.
|
12 |
MA H, ZHOU D, LIU C, et al. Recommender systems with social regularization [C]// Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong: ACM, 2011: 287-296.
|
13 |
ZHAO T, MCAULEY J, KING I. Leveraging social connections to improve personalized ranking for collaborative filtering [C]// Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. Shanghai: ACM, 2014: 261-270.
|
14 |
XIAO L, MIN Z, YONGFENG Z, et al. Learning and transferring social and item visibilities for personalized recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 337-346.
|
15 |
FAN W, MA Y, LI Q, et al. Graph neural networks for social recommendation [C]// The World Wide Web Conference. San Francisco: [s. n.], 2019: 417-426.
|
16 |
SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks [C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. Melbourne: ACM, 2019: 555-563.
|
17 |
GU P, HAN Y, GAO W, et al Enhancing session-based social recommendation through item graph embedding and contextual friendship modeling[J]. Neurocomputing, 2021, 419: 190- 202
doi: 10.1016/j.neucom.2020.08.023
|
18 |
FU B, ZHANG W, HU G, et al. Dual side deep context-aware modulation for social recommendation [C]// Proceedings of the Web Conference 2021. Ljubljana: [s. n.], 2021: 2524-2534.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|