Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1391-1398    DOI: 10.3785/j.issn.1008-973X.2021.07.018
能源与环境工程     
电场作用下液液系统中液滴变形的计算模型
张军1,2(),崔玉敏1,2,何宏舟1,2
1. 集美大学 海洋装备与机械工程学院,福建 厦门 361021
2. 集美大学 福建省能源清洁利用与开发重点实验室,福建 厦门 361021
Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field
Jun ZHANG1,2(),Yu-min CUI1,2,Hong-zhou HE1,2
1. School of Marine Equipment and Mechanical Engineering, Jimei University, Xiamen 361021, China
2. Fujian Province Key Laboratory of Energy Cleaning Utilization and Development, Jimei University, Xiamen 361021, China
 全文: PDF(981 KB)   HTML
摘要:

基于单元变形的思路,由单元守恒方程出发,建立电场中液滴变形的数值计算模型. 在此基础上,将该模型与偶极模型相耦合,提出液滴聚结的计算方法. 由所建模型及计算方法,编制数值计算程序对几种参数下液滴的变形及聚结进行模拟计算. 结果表明,所建模型对液滴变形的预测与实验结果相符较好,对液滴聚结过程的模拟与实验结果大致相符,预测的聚结时间稍低于实验值. 如果进一步提高单元阻力的模化精度及单元离散精度,所建模型会有较好的适用性. 所建模型可实现对液滴的扁平形变形的预测. 研究结果对液滴电变形的理论分析及数值模拟具有一定的借鉴意义.

关键词: 液滴变形液液系统数值模拟模型液滴聚结    
Abstract:

Based on the idea of element deformation, a numerical calculation model on droplet deformation in the electric field was established, from the element conservation equation. The model was coupled with the dipole model, and a calculation method on droplet coalescence was also proposed. Based on the established model and calculation method, a numerical calculation program was compiled the deformation and coalescence of droplets under several parameters were simulated. Results show that the prediction of droplet deformation is in good agreement with the experiment, the prediction of droplet coalescence is roughly consistent with the experiment and the predicted coalescence time is slightly lower than the experimental value. If the modeling accuracy of element resistance and the discrete accuracy of element are further improved, the model will have better applicability. The simulation results also show that the present model can be also used to predict the oblate deformation of droplets. The work has an active role for the theoretical analysis and numerical simulation of droplet deformation.

Key words: droplet deformation    liquid-liquid system    numerical simulation    model    droplet coalescence
收稿日期: 2020-05-12 出版日期: 2021-07-05
CLC:  TQ 021.1  
基金资助: 福建省科技计划资助项目(2017H0024)
作者简介: 张军(1966—),男,博士,教授,从事多相流动及电流体力学研究. orcid.org/0000-0003-4838-7526. E-mail: bull0202@sina.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张军
崔玉敏
何宏舟

引用本文:

张军,崔玉敏,何宏舟. 电场作用下液液系统中液滴变形的计算模型[J]. 浙江大学学报(工学版), 2021, 55(7): 1391-1398.

Jun ZHANG,Yu-min CUI,Hong-zhou HE. Numerical calculation model on discrete droplet deformation in liquid-liquid system under electric field. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1391-1398.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.018        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1391

图 1  液滴单元划分
图 2  液滴单元关系的示意图
图 3  液滴形状比较
图 4  2个液滴聚结实验照片
图 5  液滴聚结实验结果预测
图 6  液滴扁平变形的模拟
1 TAYLOR G Studies in electrohydrodynamics I: the circulation produced in a drop by electrical field[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1966, 291 (1425): 159- 166
2 O'KONSKI C T, JR H C T The distortion of aerosol droplets by an electric field[J]. Journal of Physical Chemistry, 1953, 57 (9): 955- 958
doi: 10.1021/j150510a024
3 AJAYI O O A note on Taylor’s electrohydrodynamic theory[J]. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences, 1978, 364 (1719): 499- 507
4 EOW J S, GHADIRI M, SHARIF A O, et al Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology[J]. Chemical Engineering Journal, 2002, 85 (3): 357- 368
5 DATTA S, MA Y, DAS A K, et al Investigation of droplet coalescence propelled by dielectrophoresis[J]. AIChE Journal, 2018, 65 (2): 829- 839
6 VO Q, SU H, TRAN T Universal transient dynamics of electrowetting droplets[J]. Scientific Reports, 2018, 8 (1): 1- 7
7 YAN H, HE L, LUO X, et al The study of deformation characteristics of polymer droplet under electric field[J]. Colloid and Polymer Science, 2015, 293: 2045- 2052
doi: 10.1007/s00396-015-3597-5
8 WU C, KAGEYAMA K Fabrication and characterization of silica-aggregate electret with improved wettability of the PFA and the colloidal silica[J]. IEEJ Transactions on Sensors and Micromachines, 2017, 137 (7): 205- 211
doi: 10.1541/ieejsmas.137.205
9 ZHANG J, HE H, HUANG G Dynamic characteristics of charged droplets in an electrostatic spraying process with twin capillaries[J]. Chinese Journal of Chemical Engineering, 2018, 26: 2403- 2411
doi: 10.1016/j.cjche.2018.03.006
10 SHERWOOD J D Breakup of fluid droplets in electric and magnetic fields[J]. Journal of Fluid Mechanics, 1988, 188: 133- 146
doi: 10.1017/S0022112088000667
11 BASARAN O A, PATZEK T W, BENNER R E, et al Nonlinear oscillations and breakup of conducting, inviscid drops in an externally applied electric field[J]. Industrial and engineering chemistry research, 1995, 34 (10): 3454- 3465
doi: 10.1021/ie00037a034
12 BAYGENTS J C, RIVETTE N J, STONE H A Electrohydrodynamic deformation and interaction of drop pairs[J]. Journal of Fluid Mechanics, 1998, 368: 359- 375
doi: 10.1017/S0022112098001797
13 危卫, 张云伟, 顾兆林 电场作用下电流变液滴的变形及力学行为[J]. 科学通报, 2013, 58 (3): 197- 205
WEI Wei, ZHANG Yun-wei, GU Zhao-lin Deformation and mechanical behavior of electrohydrodynamic droplet under external electric field[J]. Chinese Science Bulletin, 2013, 58 (3): 197- 205
doi: 10.1360/972012-107
14 WANG B B, WANG X D, YAN W M, et al Molecular dynamics simulations on coalescence and non-coalescence of conducting droplets[J]. Langmuir, 2015, 31 (27): 7457- 7462
doi: 10.1021/acs.langmuir.5b01574
15 HE X, WANG S L, YANG Y R, et al Electro-coalescence of two charged droplets under pulsed direct current electric fields with various waveforms: a molecular dynamics study[J]. Journal of Molecular Liquids, 2020, 312: 113429
doi: 10.1016/j.molliq.2020.113429
16 白莉, 倪玲英, 郭长会, 等 乳状液液滴在高压直流电场中的变形与破裂分析[J]. 应用力学学报, 2013, 30 (1): 76- 79
BAI Li, NI Ling-ying, GUO Chang-hui, et al Numerical analysis of deformation and break-up of aqueous drop of water-in-oil emulsion in high voltage D. C. fields[J]. Chinese Journal of Applied Mechanics, 2013, 30 (1): 76- 79
doi: 10.11776/cjam.30.01.D005
17 张军, 何宏舟, 黄冠星 均匀电场中液滴变形特性的耗散粒子动力学模拟[J]. 化工学报, 2014, 65 (10): 3872- 3877
ZHANG Jun, HE Hong-zhou, HUANG Guan-xing Simulation of droplet deformation in uniform electric field with dissipative particle dynamics approach[J]. Journal of Industry and Engineering, 2014, 65 (10): 3872- 3877
doi: 10.3969/j.issn.0438-1157.2014.10.017
18 陈庆国, 宋春辉, 梁雯, 等 非均匀和均匀电场下液滴的形变及运动行为[J]. 高电压技术, 2016, 42 (3): 949- 958
CHEN Qing-guo, SONG Chun-hui, LIANG Wen, et al Deformation and motion behavior of water droplet under uniform and non-uniform electric field[J]. High Voltage Engineering, 2016, 42 (3): 949- 958
19 王贞涛, 董庆铭, 张永辉, 等 静电场中液滴变形及内部流动的研究[J]. 高校化学工程学报, 2015, 29 (5): 1098- 1105
WANG Zhen-tao, DONG Qing-ming, ZHANG Yong-hui, et al Droplet deformation and its internal flow in electrostatic field[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29 (5): 1098- 1105
doi: 10.3969/j.issn.1003-9015.2015.05.011
20 KAZIMIERZ A Interaction of two dielectric or conducting droplets aligned in the uniform electric field[J]. Journal of Electrostatics, 2001, 51-52: 578- 584
doi: 10.1016/S0304-3886(01)00059-6
21 ATTEN P, LUNDGAARD L, BERG G A simplified model of electrocoalescence of two close water droplets in oil[J]. Journal of Electrostatics, 2006, 64: 550- 554
doi: 10.1016/j.elstat.2005.10.009
22 LIMA N C, D'AVILA M A Numerical simulation of electrohydrodynamic flows of Newtonian and viscoelastic droplets[J]. Journal of Non-Newtonian Fluid Mechanics, 2014, 213: 1- 14
doi: 10.1016/j.jnnfm.2014.08.016
23 GUTIERREZ E R, LEDESMA-AGUILAR R A Lattice-Boltzmann simulations of electrowetting phenomena[J]. Langmuir, 2019, 35 (14): 4849- 4859
doi: 10.1021/acs.langmuir.9b00098
24 张军, 何宏舟, 电场作用下液滴动力学特性及应用[M]. 北京: 化学工业出版社, 2018: 32-48.
25 黄伟峰, 李勇, 刘秋生 格子Boltzmann方法在电流体动力学中的应用: 均匀电场中液滴的变形和失稳[J]. 科学通报, 2007, 52 (11): 1232- 1236
HUANG Wei-feng, LI Yong, LIU Qiu-sheng The electrohydrodynamics application of lattice Boltzmann: the deformation and instability of a drop in a unified electric field[J]. Chinese Science Bulletin, 2007, 52 (11): 1232- 1236
doi: 10.3321/j.issn:0023-074X.2007.11.002
26 EOW J S, GHADIRI M, SHARIF A Deformation and break-up of aqueous drops in dielectric liquids in high electric fields[J]. Journal of Electrostatics, 2001, 51: 463- 469
27 EOW J S, GHADIRI M Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 219 (1-3): 253- 279
28 DAVIS M H Two charged spherical conductors in a uniform electric field: forces and field strength[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1964, 17 (4): 499- 511
doi: 10.1093/qjmam/17.4.499
29 王亮, 冯永训, 董守平, 等 电场破乳分散相液滴行为研究[J]. 实验流体力学, 2010, 24 (2): 30- 35
WANG Liang, FENG Yong-xun, DONG Shou-ping, et al Investigation on behavior of dispersed phase droplets for the electric demulsification[J]. Journal of Experiments in Fluid Mechanics, 2010, 24 (2): 30- 35
30 PEDERSEN A, ILDSTAD E, NYSVEEN A. Forces and movement of water droplets in oil caused by applied electric field[C]// 2004 Annual Report Conference on Electrical Insulation and Dielectric Phenomena. Boulder: IEEE, 2004: 683-687.
31 PANCHENKOV G M, VINOGRADOV V M Water-in-oil emulsion in a constant homogeneous electric field[J]. Chemistry and Technology of Fuels and Oils, 1970, 6 (6): 438- 441
doi: 10.1007/BF00718744
32 张军, 张园春, 陈智杰, 等 电场作用下油水乳化液中水滴的聚合动力学分析[J]. 农业工程学报, 2016, 32 (23): 284- 289
ZHANG Jun, ZHANG Yuan-chun, CHEN Zhi-jie, et al Coalescence dynamic analysis of water droplets in oil in electric field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32 (23): 284- 289
doi: 10.11975/j.issn.1002-6819.2016.23.039
[1] 王小龙,吕海峰,黄晋英,刘广璞. 磁流变阻尼器无模型前馈/反馈复合控制[J]. 浙江大学学报(工学版), 2022, 56(5): 873-878.
[2] 章超波,刘永政,李宏波,赵阳,张丽珠,王子豪. 基于加权残差聚类的建筑负荷预测区间估计[J]. 浙江大学学报(工学版), 2022, 56(5): 930-937.
[3] 李根,韩同春,吴俊扬,张宇. 基于有限体积法的地表径流与土壤水流耦合分析[J]. 浙江大学学报(工学版), 2022, 56(5): 947-955.
[4] 陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.
[5] 余佳洁,季彦婕,卜卿,郑岳标. 考虑断点成本的长干线分段绿波控制方法[J]. 浙江大学学报(工学版), 2022, 56(4): 640-648.
[6] 孟嘉,李俊超,陈云敏. 固废应变硬化机理与超重力模拟适用性[J]. 浙江大学学报(工学版), 2022, 56(4): 664-673.
[7] 陶宇,章博睿,徐磊,田洪雷,张亚鹏,张清文. 覆雪准则参数改进的高速列车转向架覆雪模拟[J]. 浙江大学学报(工学版), 2022, 56(4): 674-682.
[8] 张科文,潘柏松. 考虑非线性模型不确定性的航天器自主交会控制[J]. 浙江大学学报(工学版), 2022, 56(4): 833-842.
[9] 沈国辉,李保珩,郭勇,赵峥,潘峰. 输电塔扭转响应和扭转等效风荷载的计算方法[J]. 浙江大学学报(工学版), 2022, 56(3): 579-589.
[10] 褚晶辉,史李栋,井佩光,吕卫. 适用于目标检测的上下文感知知识蒸馏网络[J]. 浙江大学学报(工学版), 2022, 56(3): 503-509.
[11] 王勇超,曹钰,杨玉辉,许端清. 基于知识迁移和双向异步序列的对话生成模型[J]. 浙江大学学报(工学版), 2022, 56(3): 520-530.
[12] 刘梦凡,吴钢锋,张科锋,董平. 基于线性冲蚀公式的二维非黏性土石坝溃决模型[J]. 浙江大学学报(工学版), 2022, 56(3): 569-578.
[13] 高帅领,夏军强,董柏良,周美蓉,侯精明. 雨水口泄流对城市洪涝影响的数学模型[J]. 浙江大学学报(工学版), 2022, 56(3): 590-597.
[14] 唐晓武,费敏亮,俞悦,梁家馨,孙国平. 雨季降水对浙江井头山深埋土遗址地下水位的影响[J]. 浙江大学学报(工学版), 2022, 56(3): 598-606, 612.
[15] 屠杭垚,王万良,陈嘉诚,李国庆,吴菲. 结合大气散射模型的生成对抗网络去雾算法[J]. 浙江大学学报(工学版), 2022, 56(2): 225-235.