Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (7): 1381-1390    DOI: 10.3785/j.issn.1008-973X.2021.07.017
能源与环境工程     
水下排气降噪装置设计及其降噪特性
张凌(),邢允,叶豪杰,吴大转*()
浙江大学 能源工程学院,浙江 杭州 310027
Design of underwater exhaust noise reduction device and its noise reduction characteristics
Ling ZHANG(),Yun XING,Hao-jie YE,Da-zhuan WU*()
College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1578 KB)   HTML
摘要:

为了降低水下排气过程中难以衰减的中低频气泡噪声和边界噪声,从排气噪声特性和机理出发,设计由排气层、挡板层和纱网层组成的水下排气降噪装置. 装置结合多小孔低速排气、噪声隔绝和两相接触面积增加等降噪方法,将高速排气气流转化为低速气泡流,有效降低水下排气噪声. 实验结果表明:装置在实验流量范围内可以有效降低水下排气噪声,全频段噪声降低7.5 dB,其中噪声低频段(10~250 Hz)能量占比最大降低18.7%,极大缓解了噪声能量在低频段的富集;装置的排气层起主要降噪作用,其与挡板层组合而成的装置具有最好的、最稳定的低频降噪效果.

关键词: 水下排气中低频噪声降噪装置设计多孔排气降噪降噪性能    
Abstract:

An underwater exhaust noise reduction device consisting of an exhaust layer, a baffle layer and a gauze layer was designed based on the characteristics and mechanism of underwater exhaust noise, in order to reduce the medium-low frequency bubble noise and boundary noise that is difficult to attenuate during underwater exhaust. The device combines noise reduction methods like low-speed exhaust with multiple small holes, noise isolation and increasing two-phase contact area to convert the high-speed exhaust air flow into a low-speed bubble flow, effectively reducing underwater exhaust noise. Experimental result shows that the device reduces the underwater exhaust noise effectively within the experimental flow rate range. The noise reduction in the full frequency band is about 7.5 dB, and the energy ratio of the low frequency band (10~250 Hz) is reduced by a maximum of 18.7%, greatly alleviating the enrichment of noise energy in low frequency band; moreover, the exhaust layer plays a major role in noise reduction, and its combination with baffle layer reduces low-frequency exhaust noise the best and the most stably.

Key words: underwater exhaust    mid-low frequency noise    design of noise reduction device    multi-hole exhaust noise reduction    noise reduction performance
收稿日期: 2020-05-13 出版日期: 2021-07-05
CLC:  TB 535  
通讯作者: 吴大转     E-mail: 21860058@zju.edu.cn;wudazhuan@zju.edu.cn
作者简介: 张凌(1997—),女,硕士生,从事水下多孔排气噪声特性和降噪方法研究. orcid.org/0000-0002-6467-7067.E-mail: 21860058@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张凌
邢允
叶豪杰
吴大转

引用本文:

张凌,邢允,叶豪杰,吴大转. 水下排气降噪装置设计及其降噪特性[J]. 浙江大学学报(工学版), 2021, 55(7): 1381-1390.

Ling ZHANG,Yun XING,Hao-jie YE,Da-zhuan WU. Design of underwater exhaust noise reduction device and its noise reduction characteristics. Journal of ZheJiang University (Engineering Science), 2021, 55(7): 1381-1390.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.07.017        https://www.zjujournals.com/eng/CN/Y2021/V55/I7/1381

图 1  水下排气降噪装置爆炸图
图 2  水下排气降噪装置排气层剖视图
图 3  水下排气降噪装置挡板层俯视图
图 4  水下排气降噪装置降噪特性实验系统示意图
图 5  水下排气降噪装置降噪特性实验中水听器布置示意图
序号 T/℃ P/MPa Q/(L·min?1) v/(m·s?1)
1 20 0.05 10 1.47
2 20 0.05 25 3.69
3 20 0.05 50 7.37
4 20 0.05 75 11.06
5 20 0.05 100 14.74
6 20 0.05 125 18.43
7 20 0.05 150 22.12
表 1  水下排气降噪装置降噪特性实验气体状态参数
装置结构 排气层 挡板层 纱网层
注:“√”表示具有该层,“×”表示不具有该层
M
M1 ×
M2 ×
M3 × ×
表 2  排气层、挡板层和纱网层组合成的不同结构的水下排气降噪装置
图 6  水下排气声信号处理与分析思路
图 7  水下排气声信号的能量分布和声压级曲线
图 8  水下排气噪声总声压级
图 9  水下排气降噪装置的降噪效果
图 10  水下排气噪声在不同频段总声压级
图 11  水下排气降噪装置在各频段的降噪效果
图 12  水下排气噪声各频段总声压级的标准差
图 13  水下排气噪声在各频段能量占比
图 14  不同结构水下排气装置排气噪声总声压级
图 15  不同结构水下排气降噪装置的降噪效果
图 16  不同结构水下排气降噪装置在各频段的降噪效果
1 苗天丞. 浸没式排气的流动与声特性及其降噪方法研究[D]. 杭州: 浙江大学, 2016.
MIAO Tian-cheng. Study on the flow and acoustic characteristics of submerged exhaust and its noise reduction method[D]. Hangzhou: Zhejiang University, 2016.
2 李赫, 徐贝贝 船用柴油机排气消声器的声学特性计算及试验验证[J]. 船舶工程, 2017, 39 (8): 40- 42
LI He, XU Bei-bei Simulation and test verification of acoustic attenuation characteristics of marine diesel engine exhaust silencers[J]. Ship Engineering, 2017, 39 (8): 40- 42
3 刘竞婷. 水下气体射流与气泡流声特性的数值模拟与实验研究[D]. 杭州: 浙江大学, 2018.
LIU Jing-ting. Numerical and experimental study on the acoustic characteristics of underwater gas jet and bubble flow[D]. Hangzhou: Zhejiang University, 2018.
4 GAVIGAN J J, WATSON E E, KING W F Noise generation by gas jets in a turbulent wake[J]. The Journal of the Acoustical Society of America, 1974, 56 (4): 1094- 1099
doi: 10.1121/1.1903390
5 LIU J, QIN S, WU D. Acoustic analysis on jet-bubble formation based on 3D numerical simulations[C]// Inter-noise and Noise-con Congress and Conference. Hamburg: [s.n.], 2016: 5103-5111.
6 LIU J, WANG W, CHU N, et al Numerical simulations and experimental validation on passive acoustic emissions during bubble formation[J]. Applied Acoustics, 2018, 130: 34- 42
doi: 10.1016/j.apacoust.2017.09.005
7 CHEN L, MANASSEH R. Noise generation by an underwater gas jet[C]// The Eighth Western Pacific Acoustics Conference. Melbourne: [s. n.], 2003.
8 LINCK M B, GUPTA A K, YU K H Submerged combustion and two-phase exhaust jet instabilities[J]. Journal of Propulsion and Power, 2009, 25 (2): 522- 532
doi: 10.2514/1.35724
9 LIU J, CHU N, QIN S, et al Numerical simulations of bubble formation and acoustic characteristics from a submerged orifice: the effects of nozzle wall configurations[J]. Chemical Engineering Research and Design, 2017, 123: 130- 140
doi: 10.1016/j.cherd.2017.05.002
10 BIE H, YE J, HAO Z Effect of nozzle geometry on characteristics of submerged gas jet and bubble noise[J]. Journal of Laboratory Automation, 2016, 21 (5): 652- 659
doi: 10.1177/2211068215584902
11 ARGHODE V K, GUPTA A K Jet characteristics from a submerged combustion system[J]. Applied Energy, 2012, 89 (1): 246- 253
doi: 10.1016/j.apenergy.2011.07.022
12 郝宗睿, 王乐勤, 吴大转, 等 水下气体喷射噪声特性研究[J]. 工程热物理学报, 2010, 31 (9): 1492- 1495
HAO Zong-rui, WANG Le-qin, WU Da-zhuan, et al Underwater noise characteristics of gas jet[J]. Journal of Engineering Thermophysics, 2010, 31 (9): 1492- 1495
13 郝宗睿, 王乐勤, 吴大转, 等 喷管尺寸对水下喷气噪声特性影响的研究[J]. 工程热物理学报, 2011, 32 (6): 949- 952
HAO Zong-rui, WANG Le-qin, WU Da-zhuan, et al Effect of nozzle size on noise levels of submerged gas[J]. Journal of Engineering Thermophysics, 2011, 32 (6): 949- 952
14 郝宗睿, 王乐勤, 周忠海 喷射流场及其辐射声场数值模拟[J]. 哈尔滨工程大学学报, 2011, 32 (6): 949- 952
HAO Zong-rui, WANG Le-qin, ZHOU Zhong-hai Numerical simulation of jet flow field and its radiated sound field[J]. Journal of Harbin Engineering University, 2011, 32 (6): 949- 952
15 张建华, 李建 柴油机水下排气噪声的试验和研究[J]. 武汉造船, 1995, (1): 16- 21
ZHANG Jian-hua, LI Jian Test and research on underwater exhaust noise of diesel engine[J]. Wuhan Shipbuilding, 1995, (1): 16- 21
16 俞强, 张建华, 李建, 等 一种新型柴油机排气消声器装置的研究[J]. 武汉造船, 1998, (4): 28- 32
YU Qiang, ZHANG Jian-hua, LI Jian, et al Research on a new type of diesel engine exhaust muffler device[J]. Wuhan Shipbuilding, 1998, (4): 28- 32
17 NORWOOD C, CHEN L. Water injection for bubble noise Reduction[C]// Proceedings of Acoustics 2004. Melbourne: [s. n. ], 2004: 571-576.
18 张文平, 刘贡民, 田华安, 等 一种新型消声器的设计和试验研究[J]. 哈尔滨工程大学学报, 2004, 25 (5): 627- 630
ZHANG Wen-ping, LIU Gong-min, TIAN Hua-an, et al Design and experimental study of new type of exhaust silencer[J]. Journal of Harbin Engineering University, 2004, 25 (5): 627- 630
doi: 10.3969/j.issn.1006-7043.2004.05.018
19 钱卫忠, 张新玉 基于喷水降温冷却的舷侧排气系统声学性能分析[J]. 船舶, 2019, 30 (3): 57- 63
QIAN Wei-zhong, ZHANG Xin-yu Acoustic performance analysis of side exhaust system with water spry cooling[J]. Ship and Boat, 2019, 30 (3): 57- 63
20 张新玉, 王路宇 冷却水喷淋式排气消声器声学数值模拟[J]. 声学技术, 2018, 37(4), 188- 191
ZHANG Xin-yu, WANG Lu-yu Numerical simulation study on acoustics analysis of muffler with water spray[J]. Technical Acoustics, 2018, 37(4), 188- 191
21 邢超. 排气冷却消声器性能分析与优化[D]. 哈尔滨: 哈尔滨工程大学, 2017.
XING Chao. The analysis and optimization of exhaust cooling silencer[D]. Harbin: Harbin Engineering University, 2017.
22 王天毓. 喷水消声柴油机排气系统研究[D]. 哈尔滨: 哈尔滨工程大学, 2016.
WANG Tian-yu. Study of diesel water spraying acoustical exhaust system[D]. Harbin: Harbin Engineering University, 2017.
23 胡国安, 柳贡民, 王巍. 气液两相流排气消声装置的仿真和试验研究[C]// 2012年全国振动工程及应用学术会议. 郑州: 现代振动与噪声技术, 2012: 134-140.
HU Guo-an, LIU Gong-min, WANG Wei. Simulation and experimental research of gas-liquid two-phase flow exhaust muffler device[C]// 2012 National Conference on Vibration Engineering and Application. Zhengzhou: Modern Vibration and Noise Technology, 2012: 134-140.
[1] 徐晖,祝长生. 多跨转子系统多频传递力主动控制[J]. 浙江大学学报(工学版), 2020, 54(3): 597-605.