计算机与控制工程 |
|
|
|
|
基于知识迁移和双向异步序列的对话生成模型 |
王勇超1( ),曹钰2,杨玉辉1,许端清2,*( ) |
1. 浙江大学 信息技术中心,浙江 杭州 310027 2. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 |
|
Dialogue generation model based on knowledge transfer and two-direction asynchronous sequence |
Yong-chao WANG1( ),Yu CAO2,Yu-hui YANG1,Duan-qing XU2,*( ) |
1. Information Technology Center, Zhejiang University, Hangzhou 310027, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China |
引用本文:
王勇超,曹钰,杨玉辉,许端清. 基于知识迁移和双向异步序列的对话生成模型[J]. 浙江大学学报(工学版), 2022, 56(3): 520-530.
Yong-chao WANG,Yu CAO,Yu-hui YANG,Duan-qing XU. Dialogue generation model based on knowledge transfer and two-direction asynchronous sequence. Journal of ZheJiang University (Engineering Science), 2022, 56(3): 520-530.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.03.011
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I3/520
|
1 |
FERGUSON G, ALLEN J, MILLER B. TRAINS-95: towards a mixed-initiative planning assistant [C]// Proceedings of the Third Conferece on Artificial Intelligence Planning Systems. Edinburgh: [s.n.], 1996: 70-77.
|
2 |
GRAESSER A C, CHIPMAN P, HAYNES B C, et al AutoTutor: an intelligent tutoring system with mixed-initiative dialogue[J]. IEEE Transactions on Education, 2005, 48 (4): 612- 618
doi: 10.1109/TE.2005.856149
|
3 |
WANG H, LU Z, LI H, et al. A dataset for research on short-text conversations [C]// Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle: ACL, 2013: 935-945.
|
4 |
RITTER A, CHERRY C, DOLAN W B. Data-driven response generation in social media [C]// Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Edinburgh: ACL, 2011: 583-593.
|
5 |
VINYALS O, LE Q V. A neural conversational model [EB/OL]. [2021-06-22]. https://arxiv.org/pdf/1506.05869v1.pdf.
|
6 |
SHANG L, LU Z, LI H. Neural responding machine for short-text conversation [C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Beijing: ACL, 2015: 1577-1586.
|
7 |
SERBAN I, SORDONI A, BENGIO Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network models [C]// Proceedings of the AAAI Conference on Artificial Intelligence. Phoenix: AAAI, 2016: 3776-3783.
|
8 |
LI J, GALLEY M, BROCKETT C, et al. A diversity-promoting objective function for neural conversation models [C]// The 2016 Conference of the North American Chapter of the Association for Computational Linguistics. San Diego: [s.n.]. 2016: 110-119.
|
9 |
ZHOU H, YOUNG T, HUANG M, et al. Commonsense knowledge aware conversation generation with graph attention [C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm: [s.n.]. 2018: 4623-4629.
|
10 |
LONG Y, WANG J, XU Z, et al. A knowledge enhanced generative conversational service agent [C]// Proceedings of the 6th Dialog System Technology Challenges (DSTC6) Workshop. Long Beach: [s.n.], 2017.
|
11 |
GHAZVININEJAD M, BROCKETT C, CHANG M W, et al. A knowledge-grounded neural conversation model [EB/OL]. [2021-06-22]. https://arxiv.org/pdf/1702.01932.pdf.
|
12 |
ZHU W, MO K, ZHANG Y, et al. Flexible end-to-end dialogue system for knowledge grounded conversation [EB/OL]. [2021-06-23]. https://arxiv.org/pdf/1709.04264v1.pdf.
|
13 |
LIU S, CHEN H, REN Z, et al. Knowledge diffusion for neural dialogue generation [C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne: [s.n.], 2018: 1489-1498.
|
14 |
LIAN R, XIE M, WANG F, et al. Learning to select knowledge for response generation in dialog systems [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: [s.n.], 2019: 5081.
|
15 |
WU S, LI Y, ZHANG D, et al. Diverse and informative dialogue generation with context-specific commonsense knowledge awareness [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: [s.n.], 2020: 5811-5820.
|
16 |
ZHOU S, RONG W, ZHANG J, et al. Topic-aware dialogue generation with two-hop based graph attention [C]// ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Toronto: IEEE, 2021: 7428-7432.
|
17 |
XU H, BAO J, ZHANG G. Dynamic knowledge graph-based dialogue generation with improved adversarial meta-learning [EB/OL]. [2021-06-17]. https://arxiv.org/ftp/arxiv/papers/2004/2004.08833.pdf.
|
18 |
AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data [M]// ABERER K, CHOI K-S, NOY N, et al. The semantic web. Heidelberg: Springer, 2007: 722-735.
|
19 |
BOSSELUT A, LE BRAS R, CHOI Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering [C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Vancouver: AAAI, 2021: 4923-4931.
|
20 |
WANG J, LIU J, BI W, et al. Improving knowledge-aware dialogue generation via knowledge base question answering [EB/OL]. [2021-06-22]. https://arxiv.org/pdf/1912.07491v1.pdf.
|
21 |
CHAUDHURI D, RONY M R A H, LEHMANN J. Grounding dialogue systems via knowledge graph aware decoding with pre-trained transformers [C]// The Semantic Web 18th International Conference. Auckland: Springer, 2021: 323-339.
|
22 |
王勇超, 杨英宝, 曹钰, 邢卫 基于对抗学习和全局知识信息的关系检测技术研究[J]. 计算机应用研究, 2021, 38 (5): 1327- 1330 WANG Yong-chao, YANG Ying-bao, CAO Yu Research on relationship detection technology based on adversarial learning and global knowledge information[J]. Computer Application Research, 2021, 38 (5): 1327- 1330
|
23 |
MOU L, SONG Y, YAN R, et al. Sequence to backward and forward sequences: a content-introducing approach to generative short-text conversation [C]// Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers. Osaka: ACL, 2016: 3349-3358.
|
24 |
YU M, YIN W, HASAN K S, et al. Improved neural relation detection for knowledge base question answering [C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: [s.n.], 2017: 571-581.
|
25 |
GARDNER M W, DORLING S R Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences[J]. Atmospheric Environment, 1998, 32 (14/15): 2627- 2636
|
26 |
CHO K, MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1724-1734.
|
27 |
张全聪 略谈英语词的重复形式[J]. 英语知识, 1991, (1): 30 ZHANG Quan-cong On the repetitive forms of English words[J]. English knowledge, 1991, (1): 30
|
28 |
BORDES A, USUNIER N, CHOPRA S, et al. Large-scale simple question answering with memory networks [EB/OL]. [2021-06-17]. https://arxiv.org/pdf/1506.02075.pdf.
|
29 |
LI Y, SU H, SHEN X, et al. DailyDialog: a manually labelled multi-turn dialogue dataset [C]// Proceedings of the Eighth International Joint Conference on Natural Language Processing. Taipei: AFNLP, 2017: 986-995.
|
30 |
CAI H, CHEN H, SONG Y, et al. Data manipulation: towards effective instance learning for neural dialogue generation via learning to augment and reweight [C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: [s.n.], 2020: 6334-6343.
|
31 |
KIM S E, LIM Y S, PARK S B Strong influence of responses in training dialogue response generator[J]. Applied Sciences, 2021, 11 (16): 7415
doi: 10.3390/app11167415
|
32 |
PENNINGTON J, SOCHER R, MANNING C D. Glove: global vectors for word representation [C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Doha: ACL, 2014: 1532-1543.
|
33 |
KINGMA D P, BA J. Adam: a method for stochastic optimization [C]// Proceedings of the 3rd International Conference on Learning Representations. San Diego: [s.n.], 2015.
|
34 |
SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks [EB/OL]. [2021-06-17]. https://arxiv.org/pdf/1409.3215.pdf.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|