Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (5): 938-946, 976    DOI: 10.3785/j.issn.1008-973X.2022.05.011
土木工程     
考虑温度效应的路基粗粒填料亚塑性模型
陈绍祥(),曹志刚*(),叶星池,蔡袁强,张琪
浙江大学 滨海和城市岩土工程研究中心,浙江 杭州 310058
Hypoplastic model for road base coarse-grained materials accounting for temperature effect
Shao-xiang CHEN(),Zhi-gang CAO*(),Xing-chi YE,Yuan-qiang CAI,Qi ZHANG
Research Center of Coastal and Urban Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1613 KB)   HTML
摘要:

为了研究温度效应对路基粗粒填料静力剪切特性的影响,对GDS大三轴试验系统进行温控模块升级,采用循环流体加热模式实现对试样温度的精准控制. 选取浙江省某路基采石场碎石填料进行饱和排水剪切试验,分析不同温度下低围压路基填料静力剪切特性. 基于试验数据,建立剪胀指数与围压之间的关系,对von Wolffersdorff亚塑性模型进行改进以反映路基填料在低围压下的剪胀性. 在此基础上,提出温度对粗粒填料剪胀性及强度影响的本构关系式,建立考虑温度效应的路基填料亚塑性模型. 研究表明,温度升高使密实路基填料表现出软化现象,峰值强度随温度升高而降低;路基填料围压越高,峰值强度随温度的衰减越明显;残余强度基本不受温度变化影响. 所建立的模型能够模拟低围压填料强度与围压的非线性关系,准确反映不同温度下密实路基填料的剪切特性,可以作为温度效应下粗粒土剪切特性模拟的有效工具.

关键词: 路基填料大三轴试验温度效应静力特性亚塑性本构模型    
Abstract:

The GDS large-scale triaxial test system was upgraded by the temperature control module and the circulating fluid heating mode was used to achieve precise control and monitoring of the sample temperature, in order to study the temperature effect on the static shear characteristics of road base coarse-grained filling materials. The crushed stone filler of a roadbed quarry in Zhejiang Province was selected for saturated drainage shear test, and the static characteristics of road base filling materials under different low confining pressures and temperatures were analyzed. The relationship between the dilatancy parameter and the confining pressure was established based on experimental data. The von Wolffersdorff hypoplastic model was improved to reflect the dilatancy of the road base filling materials under low confining pressure. Constitutive relation for the influence of temperature on dilatancy and strength was proposed based on the improved model, and a hypoplastic model for road base coarse-grained materials accounting for temperature effect was established. Research show that increasing temperature makes road base filling materials soft, the peak strength of the road base filling materials will decrease with the increase of temperature, and the higher the confining pressure, the more obvious the peak strength attenuation with temperature. However, the temperature change will basically not affect the residual strength of the roadbed filler. The established model can simulate the nonlinear relationship between strength and confining pressure of road base coarse-grained materials, accurately reflect the shear characteristics under different temperatures, and can be used as an effective tool for simulating the shear characteristics of coarse-grained soil under temperature effects.

Key words: road base filling materials    large-scale triaxial test    temperature effect    static characteristics    hypoplastic constitutive model
收稿日期: 2021-07-25 出版日期: 2022-05-31
CLC:  TU 441  
基金资助: 国家自然科学基金资助项目(51778571, 51978611)
通讯作者: 曹志刚     E-mail: 21912018@zju.edu.cn;caozhigang2011@zju.edu.cn
作者简介: 陈绍祥(1997—),硕士生,从事土体亚塑性本构模型研究. orcid.org/0000-0002-3217-8570. E-mail: 21912018@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
陈绍祥
曹志刚
叶星池
蔡袁强
张琪

引用本文:

陈绍祥,曹志刚,叶星池,蔡袁强,张琪. 考虑温度效应的路基粗粒填料亚塑性模型[J]. 浙江大学学报(工学版), 2022, 56(5): 938-946, 976.

Shao-xiang CHEN,Zhi-gang CAO,Xing-chi YE,Yuan-qiang CAI,Qi ZHANG. Hypoplastic model for road base coarse-grained materials accounting for temperature effect. Journal of ZheJiang University (Engineering Science), 2022, 56(5): 938-946, 976.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.05.011        https://www.zjujournals.com/eng/CN/Y2022/V56/I5/938

图 1  温控升级后的大型三轴试验系统
参数 数值 参数 数值
ρa/(g?cm?3) 2.72 Cc 2.88
dmax /mm 20.00 ρd,max /(g?cm?3) 2.23
d50 /mm 5.76 wop /% 5.6
Cu 22.70 Dc /% 95.0
表 1  凝灰岩碎石料的基本物理参数
图 2  试样颗粒级配曲线
试验序号 $\sigma_3'$/kPa θ/℃ 试验序号 $\sigma_3' $/kPa θ/℃
1 20 5 4 20 55
2 40 5 5 40 55
3 60 5 6 60 55
表 2  控温三轴剪切试验方案
图 3  平均有效应力-偏应力-温度的三维应力路径
图 4  不同温度下峰值强度与围压关系的改进模型模拟结果及实测值
图 5  围压20 kPa下由温度诱发的轴向应变曲线
图 6  温度对密实粗粒土剪胀性及强度的影响机制
图 7  强度参数与围压关系的模拟与实测结果对比
模型参数 数值 模型参数 数值
${\varphi _{\rm{c}}}$/(°) 45 $ {k_1} $ ?0.027
$ n $ 0.6 $ {b_1} $ 0.076
$ {h_{\rm{s}}} $/MPa 75 $ {k_2} $ 0.013
${e_{\rm{i}}}_{\rm{0}}$ 0.50 $ {b_2} $ 0.023
${e_{\rm{d}}}_{\rm{0}}$ 0.22 ${k_{{\rm{vt}}} }$/(℃?1) 2.5×10?5
${e_{{\rm{c0}}} }$ 0.45 $ {k_3} $ 25.455
$\;\beta$ 4 $ {b_3} $ 42.237
表 3  凝灰岩碎石料的亚塑性模型参数
图 8  不同残余强度控制系数下的路基填料模拟结果
图 9  不同围压和温度下路基填料偏应力-轴向应变关系模拟与实测结果对比
图 10  不同围压和温度下路基填料体应变-轴向应变关系模拟与实测结果对比
1 CAMPANELLA R G, MITCHELL J K Influence of temperature variations on soil behavior[J]. ASCE Soil Mechanics and Foundation Division Journal, 1968, 94 (3): 709- 734
doi: 10.1061/JSFEAQ.0001136
2 LIU H, LIU H, XIAO Y, et al Effects of temperature on the shear strength of saturated sand[J]. Soils and Foundations, 2018, 58 (6): 1326- 1338
doi: 10.1016/j.sandf.2018.07.010
3 MCCARTNEY J S, KHOSRAVI A Field-monitoring system for suction and temperature profiles under pavements[J]. Journal of Performance of Constructed Facilities, 2013, 27 (6): 818- 825
doi: 10.1061/(ASCE)CF.1943-5509.0000362
4 JIN M S, LEE K W, KOVACS W D Seasonal variation of resilient modulus of subgrade soils[J]. Journal of Transportation Engineering, 1994, 120 (4): 603- 616
doi: 10.1061/(ASCE)0733-947X(1994)120:4(603)
5 LALOUI L Thermo-mechanical behaviour of soils[J]. French Revue of Civil Engineering, 2001, 6 (5): 809- 843
6 CEKEREVAC C, LALOUI L Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28 (3): 209- 228
doi: 10.1002/nag.332
7 DE BRUYN D, THIMUS J F The influence of temperature on mechanical characteristics of Boom clay: the results of an initial laboratory programme[J]. Engineering Geology, 1996, 41 (1): 117- 126
8 ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al Experimental evaluation of engineering behavior of soft bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132 (7): 902- 910
doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
9 KUNTIWATTANAKUL P, TOWHATA I, OHISHI K, et al Temperature effects on undrained shear characteristics of clay[J]. Soils and Foundations, 1995, 35 (1): 147- 162
doi: 10.3208/sandf1972.35.147
10 UCHAIPICHAT A, KHALILI N Experimental investigation of thermo-hydro-mechanical behaviour of an unsaturated silt[J]. Géotechnique, 2009, 59 (4): 339- 353
11 HUECKEL T, PELLEGRINI R, OLMO C D A constitutive study of thermo-elasto-plasticity of deep carbonatic clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22 (7): 549- 574
doi: 10.1002/(SICI)1096-9853(199807)22:7<549::AID-NAG927>3.0.CO;2-R
12 HUECKEL T, BALDI G Thermoplasticity of saturated clays: experimental constitutive study[J]. Journal of Geotechnical Engineering, 1990, 116 (12): 1778- 1796
doi: 10.1061/(ASCE)0733-9410(1990)116:12(1778)
13 LINGNAU B E, GRAHAM J, YARECHEWSKI D, et al Effects of temperature on strength and compressibility of sand-bentonite buffer[J]. Engineering Geology, 1996, 41 (1): 103- 115
14 TANAKA N, GRAHAM J, CRILLY T Stress-strain behaviour of reconstituted illitic clay at different temperatures[J]. Engineering Geology, 1997, 47 (4): 339- 350
doi: 10.1016/S0013-7952(96)00113-5
15 ABUEL-NAGA H M, BERGADO D T, BOUAZZA A, et al Thermomechanical model for saturated clays[J]. Géotechnique, 2009, 59 (3): 273- 278
16 林乃山 宁波轻轨沿线不同深度土体温度变化规律观测研究[J]. 中国勘察设计, 2013, (5): 82- 85
LIN Nai-shan Observation and research on the variation of soil temperature at different depths along Ningbo light rail[J]. China Engineering and Consulting, 2013, (5): 82- 85
doi: 10.3969/j.issn.1006-9607.2013.05.004
17 王铁行, 刘自成, 岳彩坤 浅层黄土温度场数值分析[J]. 西安建筑科技大学学报:自然科学版, 2007, (4): 463- 467
WANG Tie-hang, LIU Zi-cheng, YUE Cai-kun Thermal regime in shallow soil strata in loess plateau[J]. Journal of Xi'an University of Architecture and Technology: Natural Science Edition, 2007, (4): 463- 467
18 PAN Y, COULIBALY J B, ROTTA LORIA A F Thermally induced deformation of coarse-grained soils under nearly zero vertical stress[J]. Géotechnique Letters, 2020, 10 (4): 486- 491
19 NG C W W, WANG S H, ZHOU C Volume change behaviour of saturated sand under thermal cycles[J]. Géotechnique Letters, 2016, 6 (2): 124- 131
20 何绍衡, 夏唐代, 李玲玲, 等 温度效应对珊瑚礁砂抗剪强度和颗粒破碎演化特性的影响研究[J]. 岩石力学与工程学报, 2019, 38 (12): 2535- 2549
HE Shao-heng, XIA Tang-dai, LI Ling-ling, et al Influence of temperature effect on shear strength and particle breaking evolution characteristics of coral reef sand[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38 (12): 2535- 2549
21 HUECKEL T, BORSETTO M Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, 1990, 116 (12): 1765- 1777
doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
22 YAO Y P, ZHOU A N Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays[J]. Géotechnique, 2013, 63 (15): 1328- 1345
23 ZHOU C, NG C W W A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52 (8): 1101- 1110
doi: 10.1139/cgj-2014-0229
24 MAŠÍN D, KHALILI N A thermo-mechanical model for variably saturated soils based on hypoplasticity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2012, 36 (12): 1461- 1485
doi: 10.1002/nag.1058
25 VON WOLFFERSDORFF P A A hypoplastic relation for granular materials with a predefined limit state surface[J]. Mechanics of Cohesive-frictional Materials, 1996, 1 (3): 251- 271
doi: 10.1002/(SICI)1099-1484(199607)1:3<251::AID-CFM13>3.0.CO;2-3
26 中华人民共和国水利部. 土工试验规程: SL 237—1999 [S]. 北京: 中国水利水电出版社, 1999.
27 中华人民共和国水利部. 土工试验方法标准: GB/T 50123—2019 [S]. 北京: 中国计划出版社, 2019.
28 FUENTES W, WICHTMANN T, GIL M, et al ISA-Hypoplasticity accounting for cyclic mobility effects for liquefaction analysis[J]. Acta Geotechnica, 2020, 15 (6): 1513- 1531
doi: 10.1007/s11440-019-00846-2
29 GUDEHUS G A comprehensive constitutive equation for granular materials[J]. Soils and Foundations, 1996, 36 (1): 1- 12
doi: 10.3208/sandf.36.1
30 BAUER E Calibration of a comprehensive hypoplastic model for granular materials[J]. Soils and Foundations, 1996, 36 (1): 13- 26
doi: 10.3208/sandf.36.13
31 HERLE I, GUDEHUS G Determination of parameters of a hypoplastic constitutive model from properties of grain assemblies[J]. Mechanics of Cohesive-frictional Materials, 1999, 4 (5): 461- 486
doi: 10.1002/(SICI)1099-1484(199909)4:5<461::AID-CFM71>3.0.CO;2-P
32 WICHTMANN T, TRIANTAFYLLIDIS T An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I. tests with monotonic loading and stress cycles[J]. Acta Geotechnica, 2016, 11 (4): 739- 761
doi: 10.1007/s11440-015-0402-z
33 陈靖宇. 公路路基填料长期动力特性试验研究与累积应变模型[D]. 杭州: 浙江大学, 2018.
CHEN Jing-yu. Experimental study and accumulated strain model on long-term cyclic behavior of road base fillings [D]. Hangzhou: Zhejiang University, 2018.
34 凌华, 傅华, 韩华强 粗粒土强度和变形的级配影响试验研究[J]. 岩土工程学报, 2017, 39 (Suppl.1): 12- 16
LING Hua, FU Hua, HAN Hua-qiang Experimental study on effects of gradation on strength and deformation of coarse-grained soil[J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (Suppl.1): 12- 16
35 YIN Z, HICHER P, DANO C, et al Modeling mechanical behavior of very coarse granular materials[J]. Journal of Engineering Mechanics, 2017, 143 (1): C4013006
36 XIAO Y, LIU H, CHEN Y, et al Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: influences of density and pressure[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140 (12): 04014070
doi: 10.1061/(ASCE)GT.1943-5606.0001176
37 LIAO D, YANG Z X Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading[J]. Acta Geotechnica, 2021, 16 (7): 2003- 2029
doi: 10.1007/s11440-020-01127-z
38 YANG Z X, LIAO D, XU T T A hypoplastic model for granular soils incorporating anisotropic critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44 (6): 723- 748
doi: 10.1002/nag.3025
39 刘国明, 陈泽钦, 吴乐海 堆石料Gudehus-Bauer亚塑性本构模型改进及参数确定方法[J]. 岩土力学, 2018, 39 (3): 823- 830
LIU Guo-ming, CHEN Ze-qin, WU Yue-hai Improvement of Gudehus-Bauer hypoplastic constitutive model for rockfill materials and the determination of model parameters[J]. Rock and Soil Mechanics, 2018, 39 (3): 823- 830
40 LIU H, LIU H, XIAO Y, et al Influence of temperature on the volume change behavior of saturated sand[J]. Geotechnical Testing Journal, 2018, 41 (4): 747- 758
[1] 王力,刘世忠,路韡,牛思胜,施鑫磊. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683.
[2] 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232.
[3] 傅理文, 汪劲丰, 程伟平, 向华伟. 方形混凝土桥墩裂缝成因分析及对策[J]. J4, 2010, 44(9): 1738-1745.
[4] 肖南, 苗永志, 赵文争. 子午向几何缺陷冷却塔的结构性能分析[J]. J4, 2010, 44(4): 819-825.
[5] 苟昌焕 谢旭 高金盛 黄剑源. 应用碳纤维索的大跨度斜拉桥静力学特性分析[J]. J4, 2005, 39(1): 137-142.