Please wait a minute...
J4  2010, Vol. 44 Issue (4): 819-825    DOI: 10.3785/j.issn.1008-973X.2010.04.033
土木与建筑工程     
子午向几何缺陷冷却塔的结构性能分析
肖南, 苗永志, 赵文争
浙江大学 建筑工程学院, 浙江 杭州 310058
Structural performance analysis of a coolingtower shell with
meridional geometric imperfections
XIAO Nan, MIAO Yong-zhi, ZHAO Wen-zheng
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF  HTML
摘要:

钢筋混凝土双曲线冷却塔由于施工误差、混凝土长期徐变或收缩将产生不同程度的几何缺陷.为了解子午向几何缺陷对双曲线冷却塔结构性能的影响,采用有限元分析软件ANSYS对产生缺陷前、后2种模型进行各种工况下的计算对比,分析该缺陷对结构动力特性、静力特性及稳定性的影响.计算结果表明,子午向的几何缺陷提高了结构的水平抗侧刚度,提高了一阶振动频率,减小了结构在水平荷载下的变形;在风荷载或自重作用下,缺陷部位均发生应力集中现象.荷载组合后的计算结果表明,环向轴力和子午向弯矩增大,而环向弯矩和子午向轴力变化较小;缺陷对温度作用下结构的性能几乎没有影响.按规范进行的稳定分析表明,缺陷极大地降低了塔筒的局部稳定安全系数.但是特征值屈曲分析表明,在塔筒喉部半径缩小后,在水平荷载作用下的屈曲系数有所提高,而在竖向荷载下的屈曲系数有所降低,双曲线形状的改变对塔筒在不同方向荷载下的屈曲具有不同的影响效果.

Abstract:

The reinforced concrete hyperbolic cooling tower may have geometric imperfections, which stem from construction errors, the effect of creep/shrinkage of concrete, service loads, and so on. In order to investigate the influence of meridional geometric imperfections on hyperbolic cooling towers, two models, the perfect model and the constructed model, were analyzed by software ANSYS under various load cases to illustrate the structural performance, such as dynamic characteristics, static behaviors and stability. The results reveal that, the meridional geometric imperfections increase the lateral stiffness, enlarge the primary natural frequency and reduce the displacement under horizontal loads. In the vicinity of imperfections, stress concentration phenomenon is found under wind load or selfweight. In addition, according to the results of load combination, both hoop forces and meridional bending moments are augmented while hoop bending moments and meridional forces vary slightly. And temperatureinduced structural performance is not sensitive to the imperfections. From the formulation in the national code, the local elastic buckling factor of the shell is reduced remarkably. Meanwhile, eigenvalue buckling analysis reflects that the buckling factor is increased under wind load while reduced under selfweight, i.e., the deviation of hyperbolic curve produces different buckling features due to different kinds of loads.

出版日期: 2010-05-14
:  TU279.741  
通讯作者: 肖南(1965—),男,江西南康人,副教授,博士,主要从事大跨度空间结构研究.     E-mail: sholran@zju.edu.cn
作者简介: 肖南(1965—),男,江西南康人,副教授,博士,主要从事大跨度空间结构研究. E-mail: sholran@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

肖南, 苗永志, 赵文争. 子午向几何缺陷冷却塔的结构性能分析[J]. J4, 2010, 44(4): 819-825.

XIAO Na, MIAO Yong-Zhi, DIAO Wen-Zheng. Structural performance analysis of a coolingtower shell with
meridional geometric imperfections. J4, 2010, 44(4): 819-825.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2010.04.033        http://www.zjujournals.com/eng/CN/Y2010/V44/I4/819

[1] BAMU P C, ZINGONI A. Damage, deterioration and the longterm structural performance of coolingtower shells: a survey of development over the past 50 years [J]. Engineering Structures, 2005, 27(12): 17941800.
[2] JULLIEN J F, AFLAK W, LHUBY Y. Couse of deformed shapes in cooling towers [J]. Journal of Structural Engineering, 1994, 120(5): 14711488.
[3] SOARE M. Cooling towers with constructional imperfections [J]. Concrete, 1967, 11: 369379.
[4] KEMP K O, CROLL J G A. The role of geometric imperfections in the collapse of a cooling tower [J]. The Structural Engineering, 1976, 54(1): 3338.
[5] AIDABBAGH A, GUPTA A K. Meridional imperfection in cooling tower design [J]. Journal of Structural Engineering, 1979, 105(6): 10891102.
[6] GUPTA A K, AIDABBAGH A. Meridional imperfection in cooling tower design: update [J]. Journal of Structural Engineering, 1982, 108(8): 16971708.
[7] ALEXANDRIDIS A, GARDNER N J. Tolerance limits for geometric imperfections in hyperbolic cooling towers [J]. Journal of Structural Engineering, 1992, 118(8): 20822100.
[8] CHOI C K, NOH H C. Stochastic analysis of shape imperfection in RC cooling tower shells [J]. Journal of Structural Engineering, 2000, 126(3): 417423.
[9] WASZCZYSZYN Z, PABISEK E, PAMIN J, et al. Nonlinear analysis of a RC cooling tower with geometrical imperfections and a technological cutout [J]. Engineering Structures, 2000, 22(5): 480489.
[10] 马咏梅,魏琴.施工误差对冷却塔塔筒结构性能的影响分析[J].特种结构, 1997, 14(3): 3235.
MA Yongmei, WEI Qin. Structural performance analysis of a cooling tower shell with construction errors [J]. Special Structures, 1997, 14(3): 3235.
[11] 李思明,金国芳,陈志强,等.冷却塔筒壁初始几何缺陷的分析计算及处理[J].建筑结构, 2007, 37(12): 114115.
LI Siming, JIN Guofang,CHEN Zhiqiang, et al. Analysis and treatment of a cooling tower with geometrical imperfections in shell [J]. Building Structure, 2007, 37(12): 114115.
[12] RAO P S, RAMANJANEYULU K. Stability of cooling tower shell with modified wind pressure coefficients [J]. Journal of Engineering Mechanics, 1993, 119(11): 22072225.
[13] SAEID S G, MEHDI H K K, PAYMAN J. Effect of stiffening rings on buckling stability of R.C.hyperbolic cooling towers [J]. ThinWalled Structures, 2006, 44(2): 152158.
[14] DLT53392006,火力发电厂水工设计规范[S].北京:中国电力出版社, 2006.
[15] GB 500092001,建筑结构荷载规范[S].北京:中国建筑工业出版社, 2002.
[16] 沈国辉,刘若斐,孙炳楠. 双塔情况下冷却塔风载荷的数值模拟[J]. 浙江大学学报:工学版, 2007, 41(6): 10171022.
SHEN Guohui, LIU Ruofei, SUN Bingnan. Numerical simulation of wind load on cooling towers under doubletower condition [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(6): 10171022.
[17] 埃米尔·希谬,罗伯特·H斯坎伦.风对结构的作用:风工程导论[M]∥刘尚培,项海帆,谢霁明,译.上海:同济大学出版社,1992: 278288.
[18] 刘若飞.大型冷却塔的抗风研究[D].杭州:浙江大学, 2006.
LIU Ruofei. Study on windresistent behaviors of large hyperbolic cooling towers [D]. Hangzhou: Zhejiang University, 2006.
[19] 张相庭.结构风工程[M].北京:中国建筑工业出版社,2006:109, 338340.
[20] 陈卫兵. 双曲线冷却塔结构动力特性研究[D]. 武昌:武汉大学, 2005.
CHEN Weibing. Dynamic study of hyperbolic cooling towers [D]. Wuchang: Wuhan University, 2005.
[21] MAHMOUD B E H, GUPTA A K. Inelastic large displacement behavior and buckling of cooling tower [J]. Journal of Structural Engineering, 1995, 121(6): 981985.

No related articles found!