浙江大学学报(工学版)  2021, Vol. 55 Issue (4): 675-683    DOI: 10.3785/j.issn.1008-973X.2021.04.009
 土木工程

1. 兰州交通大学 土木工程学院，甘肃 兰州 730070
2. 西北民族大学 土木工程学院，甘肃 兰州 730030
3. 甘肃省交通运输厅，甘肃 兰州 730030
Temperature effect of new-type composite box girder with corrugated steel webs
Li WANG1(),Shi-zhong LIU1,*(),Wei LU1,2,Si-sheng NIU3,Xin-lei SHI1
1. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Civil Engineering, Northwest Minzu University, Lanzhou 730030, China
3. Gansu Provincial Department of Transportation, Lanzhou 730030, China
 全文: PDF(2094 KB)   HTML

Abstract:

The temperature effect of new-type composite box girder with corrugated steel webs (CSWs) is prominent due to the significant difference of thermal parameters between concrete and steel. A theoretical calculation method for relative slip, internal force and stress of new composite box girder with CSWs under vertical temperature gradient was established. The equilibrium condition of sub-girder, deformation coordination condition between sub-girders and shear deformation effect of CSWs were considered. The temperature of new composite box test beam with CSWs in large temperature difference area was observed for a long time, and the vertical temperature gradient function of the structure was fitted. The temperature response of the structure under the measured temperature gradient was calculated by the theoretical method, and the theory was verified by finite element simulation. Results show that the interfacial shear force, the bending moment and the stress of the beam are all distributed as hyperbolic cosine function along the longitudinal direction of the beam under the measured temperature gradient. The relative slip between layers is distributed as hyperbolic sine function along the longitudinal direction of the beam. Whether the shear deformation effect of webs is considered greatly influences on the temperature effect in the range of 0.8 m from the end to the middle of the composite beam, and the effect on the middle of the composite beam can be ignored. The linear expansion coefficient of concrete, the sliding stiffness between layers and the interface temperature difference of composite box girder greatly influence on the temperature effect of the new composite box girder with CSWs. The interlayer shear connectors should be reasonably arranged in the design, and the temperature effect of the new composite box girder with CSWs should be calculated by considering the variation of the linear expansion coefficient of concrete.

Key words: corrugated steel web    composite box girder    temperature field    temperature effect    shear deformation    slip effect

 CLC: U 441

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 王力 刘世忠 路韡 牛思胜 施鑫磊

#### 引用本文:

Li WANG,Shi-zhong LIU,Wei LU,Si-sheng NIU,Xin-lei SHI. Temperature effect of new-type composite box girder with corrugated steel webs. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 675-683.

#### 链接本文:

 图 1  波形钢腹板的几何尺寸 图 2  新型波形钢腹板组合箱梁的轴向变形 图 3  新型波形钢腹板组合箱梁的几何参数 表 1  20 °C时的材料特性 图 4  试验梁的有限元模型 图 5  试验场地的温度时程 图 6  试验梁温度测点布置图 图 7  测点温度时程曲线 图 8  竖向温度梯度 图 9  组合箱梁温度效应 表 2  组合箱梁温度效应主要计算结果 图 10  混凝土线膨胀系数对组合箱梁滑移和界面剪力的影响 图 11  层间滑移刚度对组合箱梁滑移和界面剪力的影响 图 12  界面温差对组合箱梁滑移和界面剪力的影响
 1 NIE Jian-guo, ZHU Ying-jie, TAO Mu-xuan, et al Optimized prestressed continuous composite girder bridges with corrugated steel webs[J]. Journal of Bridge Engineering, 2017, 22 (2): 1- 17 2 李宏江 波形钢腹板PC组合箱梁几个特殊问题研究进展[J]. 应用基础与工程科学学报, 2018, 26 (2): 440- 454 LI Hong-jiang Review on special issues in prestressed concrete box girders with corrugated steel webs[J]. Journal of Basic Science and Engineering, 2018, 26 (2): 440- 454 3 刘永健, 刘江, 张宁, 等 钢-混凝土组合梁温度效应的解析解[J]. 交通运输工程学报, 2017, 17 (4): 9- 19 LIU Yong-jian, LIU Jiang, ZHANG Ning, et al Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 9- 19 doi: 10.3969/j.issn.1671-1637.2017.04.002 4 AASHTO-LRFD bridge design specifications: AASHTO LRFDUS-2017 [S]. Washington: AASHTO, 2017. 5 Steel, concrete and composite bridges—Part2: specification for loads, BS 5400-2: 2006 [S]. [S. l.]: Standards Policy and Strategy Committee, 2006. 6 European Committee for Standardization. Eurocode1: actions on structures—Part 1-5: general actions—thermal actions [S]. Brussels: Standards Policy and Strategy Committee, 2003. 7 公路桥梁设计通用规范: JTG D60—2015 [S]. 北京: 人民交通出版社, 2015. 8 陈彦江, 王力波, 李勇 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31 (11): 85- 91 CHEN Yan-jiang, WANG Li-bo, LI Yong Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 85- 91 doi: 10.3969/j.issn.1002-0268.2014.11.014 9 季德钧, 刘江, 张瑑芳, 等 高原高寒地区钢-混凝土组合梁斜拉桥温度效应分析[J]. 建筑科学与工程学报, 2016, 33 (1): 113- 119 JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33 (1): 113- 119 doi: 10.3969/j.issn.1673-2049.2016.01.016 10 肖新辉, 刘扬, 郭鑫, 等 组合高墩大跨连续刚构桥箱梁日照温度场观测与效应分析[J]. 铁道科学与工程学报, 2014, 11 (1): 10- 16 XIAO Xin-hui, LIU Yang, GUO Xin, et al Observation and study of temperature distribution in combination of high pier large span continuous and rigid frame bridge[J]. Journal of Railway Science and Engineering, 2014, 11 (1): 10- 16 doi: 10.3969/j.issn.1672-7029.2014.01.002 11 SALLAL A, FATEN M, NIJDEM T, et al Experimental and finite element investigation of temperature distributions in concrete-encased steel girders[J]. Structural Control and Health Monitoring, 2018, 25 (1): e2042.1- e2042.23 12 徐向锋, 张峰, 刘佳琪 波形钢腹板箱梁温度分布[J]. 重庆交通大学学报: 自然科学版, 2018, 37 (12): 1- 10 XU Xiang-feng, ZHANG Feng, LIU Jia-qi Temperature distribution of box girder with corrugated steel webs[J]. Journal of Chongqing Jiaotong University: Natural Science, 2018, 37 (12): 1- 10 doi: 10.3969/j.issn.1674-0696.2018.12.01 13 强俊涛, 姚晨, 张峰, 等 波形钢腹板组合桥梁温度效应研究[J]. 公路, 2016, 61 (3): 54- 57 QIANG Jun-tao, YAO Chen, ZHANG Feng, et al Study of temperature effect on the composed bridge with corrugated steel webs[J]. Highway, 2016, 61 (3): 54- 57 14 董旭, 邓振全, 李树忱, 等 大跨波形钢腹板箱梁桥日照温度场及温差效应研究[J]. 工程力学, 2017, 34 (9): 230- 238 DONG Xu, DENG Zhen-quan, LI Shu-chen, et al Research on sunlight temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34 (9): 230- 238 15 赵品, 叶见曙 波形钢腹板箱梁桥面板横向温度效应分析[J]. 哈尔滨工程大学学报, 2019, 40 (5): 974- 978 ZHAO Pin, YE Jian-shu Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40 (5): 974- 978 16 SHAN Cheng-lin, LIU Wen-fang Temperature stress analysis of prestressed concrete box girder with corrugated steel webs[J]. Transactions of Tianjin University, 2012, 18 (2): 97- 103 doi: 10.1007/s12209-012-1626-8 17 李丽园, 周茂定, 冀伟, 等 基于剪切附加挠度的波形钢腹板组合箱梁挠度计算[J]. 东南大学学报: 自然科学版, 2019, 49 (2): 296- 302 LI Li-yuan, ZHOU Mao-ding, JI Wei, et al Deflection calculation of composite box girder with corrugated steel webs based on shear additional deflection[J]. Journal of Southeast University: Natural Science Edition, 2019, 49 (2): 296- 302 doi: 10.3969/j.issn.1671-6264.2019.02.016 18 ELGAALY M, SESHADRI A, HAMILTON R Bending strength of steel beams with corrugated webs[J]. Journal of Structural Engineering, 1997, 123 (6): 772- 782 doi: 10.1061/(ASCE)0733-9445(1997)123:6(772) 19 SAMANTA A, MUKHOPADHYAY M Finite element static and dynamic analyses of folded plates[J]. Engineering Structure, 1999, 21 (3): 227- 287 20 NEVILLE A M. Properties of concrete [M]. London: LAP, 1995. 21 蒋翔, 童根树, 张磊 耐火钢-混凝土组合梁耐火极限和承载力[J]. 浙江大学学报: 工学版, 2017, 51 (8): 1482- 1493 JIANG Xiang, TONG Gen-shu, ZHANG Lei Fire resistance and bending bearing capacity of fire resistant steel-concrete composite beams[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (8): 1482- 1493
 [1] 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232. [2] 胡霖远,陈伟球,张治成,徐荣桥. 基于Zig-zag理论的波形钢腹板梁自由振动分析[J]. 浙江大学学报(工学版), 2019, 53(3): 503-511. [3] 王震,王景全,戚家南. 钢管混凝土组合桥墩变形能力计算模型[J]. 浙江大学学报(工学版), 2016, 50(5): 864-870. [4] 崔璟, 尹凌峰, 郭小明, 唐敢. 基于残余位移的空间结构火灾温度场推定方法[J]. 浙江大学学报(工学版), 2016, 50(4): 720-726. [5] 宁峰平,姚建涛,孙锟,马明臻,赵永生. 多因素耦合对空间轴承热学特性的影响[J]. 浙江大学学报(工学版), 2016, 50(1): 129-136. [6] 魏义敏, 杨世锡, 甘春标. 变截面阶梯杆中的纵波传播特性实验[J]. 浙江大学学报(工学版), 2015, 49(6): 1146-1153. [7] 欧祖敏,孙璐,程群群. 高速铁路无砟轨道温度场简化计算方法[J]. 浙江大学学报(工学版), 2015, 49(3): 482-487. [8] 刘逸祥, 童根树, 张磊. 耐火钢圆钢管混凝土柱耐火极限和承载力[J]. 浙江大学学报(工学版), 2015, 49(2): 208-217. [9] 马驰,杨军,赵亮,梅雪松,施虎,王新孟. 高速主轴系统热特性分析与实验[J]. 浙江大学学报(工学版), 2015, 49(11): 2092-2102. [10] 童根树,杨章,张磊. 钢板剪力墙单侧加劲肋的有效抗弯刚度[J]. 浙江大学学报(工学版), 2015, 49(11): 2151-2158. [11] 胡向东,郭旺,张洛瑜. 直角绝热边界附近少量冻结管稳态温度场解析解[J]. J4, 2014, 48(3): 471-477. [12] 肖南,杨逢春. 不同温度和位移边界下混凝土楼板配筋建议[J]. 浙江大学学报(工学版), 2014, 48(11): 1925-1932. [13] 何余良,项贻强,李少俊,刘丽思. 基于不同抛物线翘曲函数组合箱梁剪力滞[J]. 浙江大学学报(工学版), 2014, 48(11): 1933-1940. [14] 王子阳, 邵卫云, 张仪萍. 考虑土壤分层的地源热泵圆柱面热源模型[J]. J4, 2013, 47(8): 1338-1345. [15] 王子阳, 张仪萍, 战国会, 俞亚南. 有渗流时埋管换热器传热模型[J]. J4, 2012, 46(8): 1450-1456.