Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (3): 661-669    DOI: 10.3785/j.issn.1008-973X.2026.03.022
动力工程     
天然气发动机空燃比的改进Smith滑模控制
姜嘉辉1(),龙云2,姚崇1,*(),林荣嘉1,宋恩哲1,柯赟1
1. 哈尔滨工程大学 烟台研究院,山东 烟台 264000
2. 哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150001
Improved Smith sliding mode control for air-fuel ratio of natural gas engine
Jiahui JIANG1(),Yun LONG2,Chong YAO1,*(),Rongjia LIN1,Enzhe SONG1,Yun KE1
1. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
 全文: PDF(1708 KB)   HTML
摘要:

为了实现天然气发动机空燃比的精确跟踪控制,提出基于预定义时间稳定性和改进的Smith预估器的滑模控制策略,有效解决了空燃比控制中由迟滞特性引发的滞后问题. 结合天然气发动机的工作原理,建立空燃比延迟动态模型. 为了克服空燃比控制中的大时延问题,采用改进的Smith预估器对空燃比的延迟进行估计和补偿. 改进的Smith预估器通过引入补偿系数,能够更好地解决参数不确定性,提高系统的适应性和动态响应性能,有效消除延迟项对闭环系统的影响. 基于补偿后的输出,设计预定义时间滑模控制器,确保控制系统的跟踪性能,使系统在预定义的时间内收敛,利用李雅普诺夫函数进行鲁棒稳定性分析和收敛性能分析. 搭建试验平台,设计多种实际测试条件,与PID控制器和快速收敛滑模控制器进行对比,验证了提出的预定义时间滑模控制器具有更好的稳定性、更小的超调及更快的响应速度,满足天然气发动机的控制要求.

关键词: 天然气发动机空燃比滑模控制非线性滑模Smith预估器预定义时间收敛    
Abstract:

A sliding mode control strategy based on predefined-time stability and improved Smith predictor was proposed in order to achieve precise air-fuel ratio tracking control for natural gas engines. The delay issue caused by hysteresis characteristics in air–fuel ratio control was effectively addressed. A delayed dynamic model of the air-fuel ratio was established based on the operating principle of natural gas engine. An improved Smith predictor was employed to estimate and compensate for the delay in order to overcome the large time delay in air-fuel ratio control. The improved Smith predictor effectively addressed parameter uncertainties and enhanced system adaptability and dynamic response by incorporating a compensation coefficient. The impact of the delay term on the closed-loop system was effectively eliminated. A predefined-time sliding mode controller was designed based on the compensated output in order to ensure the tracking performance of the control system. The system converged within a predefined time. Lyapunov functions were used to analyze the robustness and convergence performance of the system. An experimental platform was constructed, and various practical testing conditions were designed. Comparative tests with PID controllers and fast-converging sliding mode controllers were conducted. The proposed predefined-time sliding mode controller demonstrated improved stability, reduced overshoot and faster response, meeting the control requirements of natural gas engines.

Key words: natural gas engine    air-fuel ratio    sliding mode control    nonlinear sliding mode    Smith predictor    predefined-time convergence
收稿日期: 2025-03-26 出版日期: 2026-02-04
:  TP 13  
基金资助: 山东省自然科学基金资助项目(ZR2023QE009).
通讯作者: 姚崇     E-mail: jjh18846037970@163.com;esmartcontrolheu@163.com
作者简介: 姜嘉辉(2001—),男,博士生,从事发动机滑模控制技术的研究. orcid.org/0009-0009-9397-6857. E-mail:jjh18846037970@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
姜嘉辉
龙云
姚崇
林荣嘉
宋恩哲
柯赟

引用本文:

姜嘉辉,龙云,姚崇,林荣嘉,宋恩哲,柯赟. 天然气发动机空燃比的改进Smith滑模控制[J]. 浙江大学学报(工学版), 2026, 60(3): 661-669.

Jiahui JIANG,Yun LONG,Chong YAO,Rongjia LIN,Enzhe SONG,Yun KE. Improved Smith sliding mode control for air-fuel ratio of natural gas engine. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 661-669.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.022        https://www.zjujournals.com/eng/CN/Y2026/V60/I3/661

图 1  天然气发动机的结构
图 2  天然气发动机空燃比延迟动力学模型的结构
图 3  空燃比控制策略的示意图
图 4  Smith预估器的控制结构图
图 5  改进的Smith预估器控制结构图
图 6  天然气发动机的验证平台
图 7  预混天然气发动机模型的流程图
图 8  定转速定扭矩下的过量空气系数实验效果图
图 9  转速扭矩突变下的过量空气系数实验效果图
案例控制器$ {e}_{\max } $$ {e}_{\text{rms}} $$ {e}_{\mathrm{ma}} $
案例1PID0.320.0200.016
SFSMC0.210.0120.009
SPSMC0.120.0060.004
案例2PID0.130.0650.040
SFSMC0.090.0450.030
SPSMC0.050.0250.014
表 1  案例1和案例2的性能指标对比结果
1 WANG Y, SHI Y, CAI M, et al Optimization of air–fuel ratio control of fuel-powered UAV engine using adaptive fuzzy-PID[J]. Journal of the Franklin Institute, 2018, 355 (17): 8554- 8575
doi: 10.1016/j.jfranklin.2018.09.003
2 ABDURRAKHMAN A, SOEHARTANTO T, HADI H S, et al Design of output power control system based on mass flow rate comparison of air-fuel ratio (AFR) on dual fuel generator set by using PID control method[J]. International Journal of Technology, 2020, 11 (3): 574
doi: 10.14716/ijtech.v11i3.2710
3 ALSUWIAN T, TAYYEB M, AMIN A A, et al Design of a hybrid fault-tolerant control system for air–fuel ratio control of internal combustion engines using genetic algorithm and higher-order sliding mode control[J]. Energies, 2022, 15 (15): 5666
4 BEHROUZ E, REZA T, JAVAD M Second-order sliding mode strategy for air–fuel ratio control of lean-burn SI engines[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (4): 1374- 1384
doi: 10.1109/TCST.2013.2281437
5 SHAHBAZ M H , AMIN A A. Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults [J]. Advances in Mechanical Engineering, 2023, 15(3): 16878132231160729.
6 ALSUWIAN T, RIAZ U, AMIN A A, et al Hybrid fault-tolerant control for air-fuel ratio control system of internal combustion engine using fuzzy logic and super-twisting sliding mode control techniques[J]. Energies, 2022, 15 (19): 7010
doi: 10.3390/en15197010
7 EL KHAZANE J, TISSIR E H Achievement of MPPT by finite time convergence sliding mode control for photovoltaic pumping system[J]. Solar Energy, 2018, 166: 13- 20
doi: 10.1016/j.solener.2018.03.026
8 LIU L, DONG H, XU X, et al Improved sliding mode disturbance observer-based model-free finite-time terminal sliding mode control for IPMSM speed ripple minimization[J]. Control Engineering Practice, 2025, 155: 106178
9 杨佳, 杨理, 许强, 等 机械臂新型固定时间非奇异终端滑模控制[J]. 重庆理工大学学报: 自然科学, 2025, (1): 83- 92
YANG Jia, YANG Li, XU Qiang, et al A new fixed time nonsingular terminal sliding mode control for robot arms[J]. Journal of Chongqing University of Technology: Natural Science, 2025, (1): 83- 92
doi: 10.3969/j.issn.1674-8425(z).2025.01.011
10 刘永慧, 刘泽奇 不匹配扰动下永磁同步电动机的固定时间滑模跟踪控制[J]. 上海第二工业大学学报, 2024, 41 (4): 397- 405
LIU Yonghui, LIU Zeqi Fixed time sliding mode tracking control of permanent magnet synchronous motor under mismatched disturbances[J]. Journal of Shanghai Polytechnic University, 2024, 41 (4): 397- 405
doi: 10.19570/j.cnki.jsspu.2024.04.007
11 SONG X, FAN Z, LU S, et al Predefined-time sliding mode attitude control for liquid-filled spacecraft with large amplitude sloshing[J]. European Journal of Control, 2024, 77: 100970
doi: 10.1016/j.ejcon.2024.100970
12 YAN Y, CUI H, HAN P A non-singular predefined-time sliding mode tracking control for space manipulators[J]. Advances in Space Research, 2025, 75 (3): 3284- 3297
13 刘宜成, 杨迦凌, 唐瑞, 等 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报: 工学版, 2025, 59 (2): 351- 361
LIU Yicheng, YANG Jialing, TANG Rui, et al Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (2): 351- 361
doi: 10.3785/j.issn.1008-973X.2025.02.013
14 郑力文, 马世英, 王青 基于预定义时间分数阶滑模控制的风火打捆外送系统振荡抑制策略[J]. 电力自动化设备, 2025, 45 (6): 95- 100
ZHENG Liwen, MA Shiying, WANG Qing Oscillation suppression strategy of wind-fire bundling delivery system based on predefined time fractional sliding mode control[J]. Electric Power Automation Equipment, 2025, 45 (6): 95- 100
doi: 10.16081/j.epae.202412015
15 朱文亮, 刘敏杰, 王志鹏, 等 基于改进型Smith预估法对航向控制的分析[J]. 集成电路应用, 2024, 41 (11): 16- 18
ZHU Wenliang, LIU Minjie, WANG Zhipeng, et al Analysis of control of heading based on improved Smith estimation method[J]. Application of IC, 2024, 41 (11): 16- 18
16 严彤, 易振国, 张金朋, 等 航空发动机大延迟系统Smith预估补偿模糊PID控制算法[J]. 火力与指挥控制, 2013, 38 (1): 159- 162
YAN Tong, YI Zhenguo, ZHANG Jinpeng, et al A Smith predict fuzzy PID algorithm for aeroengine system with long time-delay[J]. Fire Control and Command Control, 2013, 38 (1): 159- 162
17 HAI T , KADIR D H , GHANBARI A . Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: comprehensive statistical and operating analyses [J]. Energy, 2023, 276: 127515.
18 SHARIF S A A, ALINAGHI P H, SAAD M, et al A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems[J]. Archives of Control Sciences, 2020, 30 (3): 599- 620
19 TAUZIA X, KARAKY H, MAIBOOM A Evaluation of a semi-physical model to predict NOx and soot emissions of a CI automotive engine under warm-up like conditions[J]. Applied Thermal Engineering, 2018, 137: 521- 531
doi: 10.1016/j.applthermaleng.2018.04.005
20 GANGOPADHYAY A, MECKL P Modeling and validation of a lean burn natural gas engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123 (3): 425- 430
doi: 10.1115/1.1386790
21 HAN Y, YOUNG P Natural gas engine model for speed and air-fuel control[J]. International Journal of Modelling, Identification and Control, 2020, 36 (2): 104
doi: 10.1504/IJMIC.2020.116193
[1] 林荣嘉,龙云,姚崇,宋体康,柯赟. 船用天然气发动机燃烧过程无模型自适应控制[J]. 浙江大学学报(工学版), 2025, 59(6): 1311-1321.
[2] 刘宜成,杨迦凌,唐瑞,程靖. 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报(工学版), 2025, 59(2): 351-361.
[3] 皇金锋,李啸天. 非最小相位的单电感双输出 Buck-Boost变换器的复合控制方法[J]. 浙江大学学报(工学版), 2024, 58(6): 1266-1274.
[4] 皇金锋,周杰,黄红杰. 基于滑模自抗扰的储能变流器控制策略[J]. 浙江大学学报(工学版), 2024, 58(10): 2171-2181.
[5] 赵影,王达,倪佳华,凌永辉,项基,郑婷婷. 控制同步发电机加速功率的储能滑模控制器[J]. 浙江大学学报(工学版), 2023, 57(5): 1050-1060.
[6] 于瑞,徐雪峰,周华,杨华勇. 基于改进切换增益自适应率的欠驱动USV滑模轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(3): 436-443.
[7] 张国澎,李子汉,王浩,郑征. 隔离型交?直流固态变压器前后级一体化滑模控制[J]. 浙江大学学报(工学版), 2022, 56(3): 622-630.
[8] 周兵,刘阳毅,吴晓建,柴天,曾勇强,潘倩兮. 主动前轮转向和直接横摆力矩集成控制[J]. 浙江大学学报(工学版), 2022, 56(12): 2330-2339.
[9] 李静,王晨,张家旭. 基于自适应快速终端滑模的车轮滑移率跟踪控制[J]. 浙江大学学报(工学版), 2021, 55(1): 169-176.
[10] 李剑,汤文成. 基于H∞理论的滚珠丝杠进给系统滑模控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1497-1504.
[11] 朱艺锋,吴党建,白冰洋,岳豪. 单相五电平脉冲整流器滑模比例积分谐振控制[J]. 浙江大学学报(工学版), 2020, 54(8): 1578-1586.
[12] 陈朝萌,周晓军,杨辰龙,吕浩亮,魏杰超. 高速电驱动履带车辆紧急制动控制策略[J]. 浙江大学学报(工学版), 2020, 54(3): 442-449.
[13] 吴爱国,吴绍华,董娜. 机械臂非奇异快速终端滑模模糊控制[J]. 浙江大学学报(工学版), 2019, 53(5): 862-871.
[14] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[15] 李国飞, 滕青芳, 王传鲁, 张雅琴. 应用滑模控制的四开关逆变器PMSM系统FCS-MPC策略[J]. 浙江大学学报(工学版), 2017, 51(3): 620-627.