Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1311-1321    DOI: 10.3785/j.issn.1008-973X.2025.06.022
能源与动力工程     
船用天然气发动机燃烧过程无模型自适应控制
林荣嘉1(),龙云1,姚崇1,*(),宋体康2,柯赟1
1. 哈尔滨工程大学 烟台研究院,山东 烟台 264000
2. 中国重型汽车集团有限公司,山东 济南 250000
Model-free adaptive control of combustion process in marine natural gas engine
Rongjia LIN1(),Yun LONG1,Chong YAO1,*(),Tikang SONG2,Yun KE1
1. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China
2. China National Heavy Duty Truck Group Co., Jinan 250000, China
 全文: PDF(1894 KB)   HTML
摘要:

天然气发动机燃烧过程的动态特性难以描述、非线性强、存在未知干扰,导致燃烧过程反馈量控制精度较低. 为此提出改进的无模型自适应控制器(MFAC). 建立天然气发动机系统模型并校验其有效性,选取燃烧中点(CA50)作为燃烧过程反馈控制量. 通过建立离散的偏格式动态线性化模型,利用系统输入输出数据估计燃烧过程中点火正时和空燃比的伪偏导数,求解得到MFAC控制器. MFAC控制器持续追踪在线更新的期望状态进而实现对CA50的跟踪控制. 为了兼顾CA50动态收敛速度和静态跟踪精度,在MFAC控制器中引入基于跟踪误差变化的快速收敛项,并针对闭环系统给出严格的稳定性和收敛性能分析. 设计2种测试方案,将所提控制器与增量式PID控制器进行对比,结果表明所提出的控制器在鲁棒性、收敛速度和跟踪精度方面都有更优越的表现.

关键词: 天然气发动机燃烧过程燃烧中点无模型自适应控制收敛速度在线数据    
Abstract:

The dynamic characteristics of the natural gas engine combustion process are difficult to describe, highly nonlinear, and subject to unknown disturbances, resulting in the low control precision of feedback control variable of combustion process. To address the above issue, an improved model-free adaptive controller (MFAC) was proposed. Firstly, a natural gas engine system model was established and its effectiveness was verified, and the combustion midpoint (CA50) was selected as the feedback control variable of the combustion process. The traditional MFAC was obtained by establishing a discrete partial form dynamic linearization model, using the system input and output data to estimate the pseudo partial derivatives of the ignition timing and air-fuel ratio during the combustion process. The MFAC continuously tracked the expected state updated online to realize the tracking control of CA50. Furthermore, in order to take into account the dynamic convergence rate and tracking accuracy of CA50, a fast convergence term based on the differential of the tracking error was introduced into the traditional MFAC, and strict stability proof and convergence performance analysis were provided for the closed loop system. Finally, two test experiments were conducted to compare the proposed controller with the PID controller, and the results showed that the proposed improved MFAC made significant improvements in robustness, convergence rate and tracking accuracy.

Key words: natural gas engine    combustion process    combustion midpoint    model-free adaptive controller    convergence rate    online data
收稿日期: 2024-04-26 出版日期: 2025-05-30
CLC:  TP 241  
基金资助: 山东省自然科学基金资助项目(ZR2023QE009).
通讯作者: 姚崇     E-mail: a13199462689@163.com;esmartcontrolheu@163.com
作者简介: 林荣嘉(2000—),男,硕士生,从事发动机电子控制技术研究. orcid.org/0009-0002-2377-8379. E-mail:a13199462689@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林荣嘉
龙云
姚崇
宋体康
柯赟

引用本文:

林荣嘉,龙云,姚崇,宋体康,柯赟. 船用天然气发动机燃烧过程无模型自适应控制[J]. 浙江大学学报(工学版), 2025, 59(6): 1311-1321.

Rongjia LIN,Yun LONG,Chong YAO,Tikang SONG,Yun KE. Model-free adaptive control of combustion process in marine natural gas engine. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1311-1321.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1311

图 1  天然气发动机系统模型示意图
参数数值
发动机型式直列、增压中冷、四冲程
着火方式火花塞点火
压缩比11∶1
缸径/mm150
行程/mm185
排量/L19.6
气缸数6
点火顺序1-5-3-6-2-4
额定转速/(r·min?1)1500
额定功率/kW330
表 1  天然气发动机基本结构参数
OPn/(r·min?1)ML/(N·m)SIT/(° CA)γ
190040025.118.28
290080024.418.82
3110065026.318.82
41100130024.119.70
5130085025.819.48
61300170023.620.14
71500105025.919.99
81500210023.420.29
表 2  天然气发动机模型校正工况点
图 2  模型标定曲线
图 3  燃烧过程MFAC控制器设计流程图
图 4  MFAC半物理实验平台
图 5  定转速工况下CA50实验效果对比
图 6  负载扭矩突变下CA50实验效果对比
图 7  不同工况下实验性能指标对比
1 GONG Q, XU J, YE J, et al Nonlinear model predictive control for premixed turbocharged natural gas engine[J]. IEEE/ASME Transactions on Mechatronics, 2022, 27 (5): 3694- 3705
doi: 10.1109/TMECH.2021.3130910
2 CAO J, DONG D, WEI F, et al Investigation on jet controlled diffusion combustion (JCDC) mode applied on a marine large-bore two-stroke engine[J]. Journal of Cleaner Production, 2023, 429: 139546
doi: 10.1016/j.jclepro.2023.139546
3 刘津津, 丁顺良, 高建设, 等 低负荷工况下天然气发动机燃烧不稳定性分析[J]. 内燃机学报, 2022, 40 (5): 394- 402
LIU Jinjin, DING Shunliang, GAO Jianshe, et al Analysis of combustion instability for a natural gas engine under low load conditions[J]. Transactions of CSICE, 2022, 40 (5): 394- 402
4 CARLUCCI A P, LAFORGIA D, MOTZ S, et al Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals[J]. Energy Conversion and Management, 2014, 77: 193- 207
doi: 10.1016/j.enconman.2013.08.054
5 GAO J, WU Y, SHEN T A statistical combustion phase control approach of SI engines[J]. Mechanical Systems and Signal Processing, 2017, 85: 218- 235
doi: 10.1016/j.ymssp.2016.08.007
6 付建勤, 刘敬平, 阳辉勇, 等 LNG发动机低速工况下瞬态燃烧过程试验研究[J]. 湖南大学学报: 自然科学版, 2016, 43 (2): 64- 69
FU Jianqin, LIU Jingping, YANG Huiyong, et al Experimental study on the transient combustion process of LNG engine under low-speed conditions[J]. Journal of Hunan University: Natural Sciences, 2016, 43 (2): 64- 69
7 刘晓阳, 姚崇, 王睿, 等 船用柴油机燃烧过程控制策略设计及仿真验证[J]. 内燃机学报, 2021, 39 (3): 209- 216
LIU Xiaoyang, YAO Chong, WANG Rui, et al Designed and verified the marine diesel engine combustion process control strategy[J]. Transactions of CSICE, 2021, 39 (3): 209- 216
8 OLSSON J-O, TUNESTAL P, JOHANSSON B. Closed-loop control of an HCCI engine [C]// SAE 2001 World Congress and Exhibition. Detroit: SAE International, 2001, 110: 1076–1085.
9 唐俊, 余永华, 王勤鹏, 等 船用中速柴油机缸压闭环控制技术仿真研究[J]. 内燃机工程, 2019, 40 (1): 72- 78
TANG Jun, YU Yonghua, WANG Qinpeng, et al Simulation and analysis of closed-loop control technology for medium speed marine diesel engines based on in-cylinder pressure[J]. Chinese Internal Combustion Engine Engineering, 2019, 40 (1): 72- 78
10 STRANDH P, BENGTSSON J, JOHANSSON R, et al. Cycle-to-cycle control of a dual-fuel HCCI engine [C]// SAE 2004 World Congress and Exhibition. Detroit: SAE International, 2004, 113: 589−598.
11 曲栓, 石磊, 邓康耀 均质压燃燃烧闭环控制系统的开发和试验研究[J]. 内燃机工程, 2012, 33 (2): 28- 32
QU Shuan, SHI Lei, DENG Kangyao Development and experimental study of cyele-based combustion control system[J]. Chinese Internal Combustion Engine Engineering, 2012, 33 (2): 28- 32
doi: 10.3969/j.issn.1000-0925.2012.02.005
12 王佐, 刘鹏 受扰直流降压变换器自适应离散滑模控制设计与实现[J]. 控制理论与应用, 2023, 40 (11): 1911- 1919
WANG Zuo, LIU Peng Adaptive discrete-time sliding mode control design and implementation for DC-DC buck converters with disturbances[J]. Control Theory and Applications, 2023, 40 (11): 1911- 1919
doi: 10.7641/CTA.2023.20471
13 张鹏, 蒋明宏, 李翁衡, 等 基于无模型自适应算法的主控式干摩擦阻尼器-双转子系统振动主动控制[J]. 机械工程学报, 2025, 61 (1): 140- 149
ZHANG Peng, JIANG Minghong, LI Wengheng, et al Vibration control of active dry friction damper-twin rotor system based on the model-free adaptive algorithm[J]. Journal of Mechanical Engineering, 2025, 61 (1): 140- 149
14 ZHANG B, ZHANG W Adaptive predictive functional control of a class of nonlinear systems[J]. ISA Transactions, 2006, 45 (2): 175- 183
doi: 10.1016/S0019-0578(07)60188-8
15 焦世广, 侯忠生 运行时间区间可变的地铁列车无模型自适应迭代学习控制[J]. 控制理论与应用, 2025, 42 (3): 642- 648
JIAO Shiguang, HOU Zhongsheng Model-free adaptive iterative learning control for subway train with variable operation time interval[J]. Control Theory and Technology, 2025, 42 (3): 642- 648
16 YUE B F, SU M Y, JIN X Z, et al Event-triggered MFAC of nonlinear NCSs against sensor faults and DoS attacks[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69 (11): 4409- 4413
17 LIU X, QIU L, FANG Y, et al Predictor-based data-driven model-free adaptive predictive control of power converters using machine learning[J]. IEEE Transactions on Industrial Electronics, 2023, 70 (8): 7591- 7603
doi: 10.1109/TIE.2022.3208594
18 YANG C, ZHENG T, BU M, et al Distributed model-free adaptive control strategy for hybrid AC/DC microgrid with event-triggered mechanism[J]. IEEE Transactions on Industrial Electronics, 2024, 71 (8): 9077- 9086
doi: 10.1109/TIE.2023.3331158
19 侯忠生, 许建新 数据驱动控制理论及方法的回顾和展望[J]. 自动化学报, 2009, 35 (6): 650- 667
HOU Zhongsheng, XU Jianxin On data-driven control theory: the state of the art and perspective[J]. Acta Automatica Sinica, 2009, 35 (6): 650- 667
doi: 10.3724/SP.J.1004.2009.00650
20 罗禹贡, 陈锐, 胡云 分布式电驱动车辆线控转向系统MFAC主动容错控制[J]. 机械工程学报, 2019, 55 (22): 131- 139
LUO Yugong, CHEN Rui, HU Yun Active fault-tolerant control based on MFAC or 4WID EV with steering by wire system[J]. Journal of Mechanical Engineering, 2019, 55 (22): 131- 139
doi: 10.3901/JME.2019.22.131
21 XU F, SUI Z, WANG Y, et al An improved data-driven integral sliding-mode control and its automation application[J]. Applied Sciences, 2023, 13 (24): 13094
doi: 10.3390/app132413094
22 OOMMEN L P, NARAYANAPPA K G Assimilative capacity approach for air pollution control in automotive engines through magnetic field-assisted combustion of hydrocarbons[J]. Environmental Science and Pollution Research, 2021, 28 (45): 63661- 63671
doi: 10.1007/s11356-020-11923-5
23 LIU J, DUMITRESCU C E Single and double Wiebe function combustion model for a heavy-duty diesel engine retrofitted to natural-gas spark-ignition[J]. Applied Energy, 2019, 248: 95- 103
doi: 10.1016/j.apenergy.2019.04.098
24 MA F, WANG Y, WANG M, et al Development and validation of a quasi-dimensional combustion model for SI engines fuelled by HCNG with variable hydrogen fractions[J]. International Journal of Hydrogen Energy, 2008, 33 (18): 4863- 4875
doi: 10.1016/j.ijhydene.2008.06.068
25 施东晓, 郭立新, 钟博, 等 废气再循环率及点火时刻对天然气发动机燃烧和排温的影响[J]. 内燃机工程, 2021, 42 (1): 7- 14
SHI Dongxiao, GUO Lixin, ZHONG Bo, et al Effect of exhaust gas recirculation and ignition timing on combustion process and exhaust temperature of natural gas engine[J]. Chinese Internal Combustion Engine Engineering, 2021, 42 (1): 7- 14
26 WEN B, WU X, WU K, et al CA50 estimation based on Neural Network and smooth variable structure filter[J]. ISA Transactions, 2021, 114: 499- 507
doi: 10.1016/j.isatra.2020.12.032
27 HOU Z, JIN S A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19 (6): 1549- 1558
doi: 10.1109/TCST.2010.2093136
[1] 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制[J]. 浙江大学学报(工学版), 2022, 56(6): 1168-1174.
[2] 张燕,王建宙,李威,王婕,陈玲玲,杨鹏. 基于数据驱动的膝关节外骨骼控制[J]. 浙江大学学报(工学版), 2019, 53(10): 2024-2033.
[3] 王友卫, 凤丽洲. 基于双子群和分区采样的果蝇优化新算法[J]. 浙江大学学报(工学版), 2017, 51(11): 2292-2298.
[4] 李孟涵,张强, 李国祥, 邵思东. 高压直喷天然气发动机HC排放[J]. 浙江大学学报(工学版), 2016, 50(2): 341-346.