| 动力工程 |
|
|
|
|
| 天然气发动机空燃比的改进Smith滑模控制 |
姜嘉辉1( ),龙云2,姚崇1,*( ),林荣嘉1,宋恩哲1,柯赟1 |
1. 哈尔滨工程大学 烟台研究院,山东 烟台 264000 2. 哈尔滨工程大学 动力与能源工程学院,黑龙江 哈尔滨 150001 |
|
| Improved Smith sliding mode control for air-fuel ratio of natural gas engine |
Jiahui JIANG1( ),Yun LONG2,Chong YAO1,*( ),Rongjia LIN1,Enzhe SONG1,Yun KE1 |
1. Yantai Research Institute, Harbin Engineering University, Yantai 264000, China 2. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China |
引用本文:
姜嘉辉,龙云,姚崇,林荣嘉,宋恩哲,柯赟. 天然气发动机空燃比的改进Smith滑模控制[J]. 浙江大学学报(工学版), 2026, 60(3): 661-669.
Jiahui JIANG,Yun LONG,Chong YAO,Rongjia LIN,Enzhe SONG,Yun KE. Improved Smith sliding mode control for air-fuel ratio of natural gas engine. Journal of ZheJiang University (Engineering Science), 2026, 60(3): 661-669.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.03.022
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I3/661
|
| 1 |
WANG Y, SHI Y, CAI M, et al Optimization of air–fuel ratio control of fuel-powered UAV engine using adaptive fuzzy-PID[J]. Journal of the Franklin Institute, 2018, 355 (17): 8554- 8575
doi: 10.1016/j.jfranklin.2018.09.003
|
| 2 |
ABDURRAKHMAN A, SOEHARTANTO T, HADI H S, et al Design of output power control system based on mass flow rate comparison of air-fuel ratio (AFR) on dual fuel generator set by using PID control method[J]. International Journal of Technology, 2020, 11 (3): 574
doi: 10.14716/ijtech.v11i3.2710
|
| 3 |
ALSUWIAN T, TAYYEB M, AMIN A A, et al Design of a hybrid fault-tolerant control system for air–fuel ratio control of internal combustion engines using genetic algorithm and higher-order sliding mode control[J]. Energies, 2022, 15 (15): 5666
|
| 4 |
BEHROUZ E, REZA T, JAVAD M Second-order sliding mode strategy for air–fuel ratio control of lean-burn SI engines[J]. IEEE Transactions on Control Systems Technology, 2014, 22 (4): 1374- 1384
doi: 10.1109/TCST.2013.2281437
|
| 5 |
SHAHBAZ M H , AMIN A A. Design of hybrid fault-tolerant control system for air-fuel ratio control of internal combustion engines using artificial neural network and sliding mode control against sensor faults [J]. Advances in Mechanical Engineering, 2023, 15(3): 16878132231160729.
|
| 6 |
ALSUWIAN T, RIAZ U, AMIN A A, et al Hybrid fault-tolerant control for air-fuel ratio control system of internal combustion engine using fuzzy logic and super-twisting sliding mode control techniques[J]. Energies, 2022, 15 (19): 7010
doi: 10.3390/en15197010
|
| 7 |
EL KHAZANE J, TISSIR E H Achievement of MPPT by finite time convergence sliding mode control for photovoltaic pumping system[J]. Solar Energy, 2018, 166: 13- 20
doi: 10.1016/j.solener.2018.03.026
|
| 8 |
LIU L, DONG H, XU X, et al Improved sliding mode disturbance observer-based model-free finite-time terminal sliding mode control for IPMSM speed ripple minimization[J]. Control Engineering Practice, 2025, 155: 106178
|
| 9 |
杨佳, 杨理, 许强, 等 机械臂新型固定时间非奇异终端滑模控制[J]. 重庆理工大学学报: 自然科学, 2025, (1): 83- 92 YANG Jia, YANG Li, XU Qiang, et al A new fixed time nonsingular terminal sliding mode control for robot arms[J]. Journal of Chongqing University of Technology: Natural Science, 2025, (1): 83- 92
doi: 10.3969/j.issn.1674-8425(z).2025.01.011
|
| 10 |
刘永慧, 刘泽奇 不匹配扰动下永磁同步电动机的固定时间滑模跟踪控制[J]. 上海第二工业大学学报, 2024, 41 (4): 397- 405 LIU Yonghui, LIU Zeqi Fixed time sliding mode tracking control of permanent magnet synchronous motor under mismatched disturbances[J]. Journal of Shanghai Polytechnic University, 2024, 41 (4): 397- 405
doi: 10.19570/j.cnki.jsspu.2024.04.007
|
| 11 |
SONG X, FAN Z, LU S, et al Predefined-time sliding mode attitude control for liquid-filled spacecraft with large amplitude sloshing[J]. European Journal of Control, 2024, 77: 100970
doi: 10.1016/j.ejcon.2024.100970
|
| 12 |
YAN Y, CUI H, HAN P A non-singular predefined-time sliding mode tracking control for space manipulators[J]. Advances in Space Research, 2025, 75 (3): 3284- 3297
|
| 13 |
刘宜成, 杨迦凌, 唐瑞, 等 柔性空间机器人预定义时间自适应滑模控制[J]. 浙江大学学报: 工学版, 2025, 59 (2): 351- 361 LIU Yicheng, YANG Jialing, TANG Rui, et al Predefined time adaptive sliding mode control for flexible space robot[J]. Journal of Zhejiang University: Engineering Science, 2025, 59 (2): 351- 361
doi: 10.3785/j.issn.1008-973X.2025.02.013
|
| 14 |
郑力文, 马世英, 王青 基于预定义时间分数阶滑模控制的风火打捆外送系统振荡抑制策略[J]. 电力自动化设备, 2025, 45 (6): 95- 100 ZHENG Liwen, MA Shiying, WANG Qing Oscillation suppression strategy of wind-fire bundling delivery system based on predefined time fractional sliding mode control[J]. Electric Power Automation Equipment, 2025, 45 (6): 95- 100
doi: 10.16081/j.epae.202412015
|
| 15 |
朱文亮, 刘敏杰, 王志鹏, 等 基于改进型Smith预估法对航向控制的分析[J]. 集成电路应用, 2024, 41 (11): 16- 18 ZHU Wenliang, LIU Minjie, WANG Zhipeng, et al Analysis of control of heading based on improved Smith estimation method[J]. Application of IC, 2024, 41 (11): 16- 18
|
| 16 |
严彤, 易振国, 张金朋, 等 航空发动机大延迟系统Smith预估补偿模糊PID控制算法[J]. 火力与指挥控制, 2013, 38 (1): 159- 162 YAN Tong, YI Zhenguo, ZHANG Jinpeng, et al A Smith predict fuzzy PID algorithm for aeroengine system with long time-delay[J]. Fire Control and Command Control, 2013, 38 (1): 159- 162
|
| 17 |
HAI T , KADIR D H , GHANBARI A . Modeling the emission characteristics of the hydrogen-enriched natural gas engines by multi-output least-squares support vector regression: comprehensive statistical and operating analyses [J]. Energy, 2023, 276: 127515.
|
| 18 |
SHARIF S A A, ALINAGHI P H, SAAD M, et al A new strongly predefined time sliding mode controller for a class of cascade high-order nonlinear systems[J]. Archives of Control Sciences, 2020, 30 (3): 599- 620
|
| 19 |
TAUZIA X, KARAKY H, MAIBOOM A Evaluation of a semi-physical model to predict NOx and soot emissions of a CI automotive engine under warm-up like conditions[J]. Applied Thermal Engineering, 2018, 137: 521- 531
doi: 10.1016/j.applthermaleng.2018.04.005
|
| 20 |
GANGOPADHYAY A, MECKL P Modeling and validation of a lean burn natural gas engine[J]. Journal of Dynamic Systems, Measurement, and Control, 2001, 123 (3): 425- 430
doi: 10.1115/1.1386790
|
| 21 |
HAN Y, YOUNG P Natural gas engine model for speed and air-fuel control[J]. International Journal of Modelling, Identification and Control, 2020, 36 (2): 104
doi: 10.1504/IJMIC.2020.116193
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|