| 计算机技术与控制工程 |
|
|
|
|
| 融合全局信息和对比学习的图神经网络推荐模型 |
王彦乐( ),张瑞峰,李锵*( ) |
| 天津大学 微电子学院,天津 300072 |
|
| Graph neural network recommendation model integrating global information and contrastive learning |
Yanle WANG( ),Ruifeng ZHANG,Qiang LI*( ) |
| School of Microelectronics, Tianjin University, Tianjin 300072, China |
| 1 |
LI Y, LIU K, SATAPATHY R, et al Recent developments in recommender systems: a survey[J]. IEEE Computational Intelligence Magazine, 2024, 19 (2): 78- 95
|
| 2 |
ALJUNID M F, MANJAIAH D H, HOOSHMAND M K, et al A collaborative filtering recommender systems: survey[J]. Neurocomputing, 2025, 617: 128718
doi: 10.1016/j.neucom.2024.128718
|
| 3 |
KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42 (8): 30- 37
|
| 4 |
WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 165–174.
|
| 5 |
HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 639–648.
|
| 6 |
PENG S, SUGIYAMA K, MINE T. SVD-GCN: a simplified graph convolution paradigm for recommendation [C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 1625–1634.
|
| 7 |
SUN J, ZHANG Y, MA C, et al. Multi-graph convolution collaborative filtering [C]// Proceedings of the IEEE International Conference on Data Mining. Beijing: IEEE, 2020: 1306–1311.
|
| 8 |
WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2021: 726–735.
|
| 9 |
YU J, YIN H, XIA X, et al. Are graph augmentations necessary? : simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022: 1294–1303.
|
| 10 |
CHEN J, LI H, ZHANG X, et al SR-HetGNN: session-based recommendation with heterogeneous graph neural network[J]. Knowledge and Information Systems, 2024, 66 (2): 1111- 1134
doi: 10.1007/s10115-023-01986-4
|
| 11 |
LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference 2022. [S.l.]: ACM, 2022: 2320–2329.
|
| 12 |
LI X, TIAN Y, DONG B, et al MD-GCCF: multi-view deep graph contrastive learning for collaborative filtering[J]. Neurocomputing, 2024, 590: 127756
doi: 10.1016/j.neucom.2024.127756
|
| 13 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [EB/OL]. (2012–05–09)[2025–02–14]. https://arxiv.org/pdf/1205.2618.
|
| 14 |
GUTMANN U M, HYVÄRINEN A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s.n.], 2010: 297–304.
|
| 15 |
LIN S, LIU C, ZHOU P, et al Prototypical graph contrastive learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (2): 2747- 2758
doi: 10.1109/TNNLS.2022.3191086
|
| 16 |
HARPER F M, KONSTAN J A The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19
|
| 17 |
CHEN J, GUAN H, LI H, et al. PACIFIC: enhancing sequential recommendation via preference-aware causal intervention and counterfactual data augmentation [C]// Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. Boise: ACM, 2024: 249–258.
|
| 18 |
CHEN J, ZHANG F, LI H, et al EMPNet: an extract-map-predict neural network architecture for cross-domain recommendation[J]. World Wide Web, 2024, 27 (2): 12
doi: 10.1007/s11280-024-01240-z
|
| 19 |
LIU Y, XIA L, HUANG C. SelfGNN: self-supervised graph neural networks for sequential recommendation [C]// Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. Washington DC: ACM, 2024: 1609–1618.
|
| 20 |
JIANG Y, HUANG C, HUANG L. Adaptive graph contrastive learning for recommendation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023: 4252–4261.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|