Please wait a minute...
浙江大学学报(工学版)  2026, Vol. 60 Issue (2): 351-359    DOI: 10.3785/j.issn.1008-973X.2026.02.013
计算机技术与控制工程     
融合全局信息和对比学习的图神经网络推荐模型
王彦乐(),张瑞峰,李锵*()
天津大学 微电子学院,天津 300072
Graph neural network recommendation model integrating global information and contrastive learning
Yanle WANG(),Ruifeng ZHANG,Qiang LI*()
School of Microelectronics, Tianjin University, Tianjin 300072, China
 全文: PDF(1181 KB)   HTML
摘要:

基于图神经网络(GNN)的现有协同过滤模型存在原始图噪声和数据稀疏问题,为此提出新的图神经网络推荐模型(GICL),利用奇异值分解保留全局信息中主要的协同关系,抑制局部噪声. 为了挖掘节点之间的潜在关系,从图结构和语义空间中学习代表性嵌入作为节点的增强邻居,基于拓展的邻居构建对比学习任务. 利用GNN在交互图上聚集的同质节点信息创建节点的结构对比视图. 将原始图划分为语义子图,计算子图上的原型作为语义对比视图;将图协同过滤任务与2个对比辅助任务进行联合训练,缓解数据稀疏问题. 在4个公开数据集上的实验结果表明,GICL的推荐性能优于众多主流推荐模型.

关键词: 图神经网络(GNN)协同过滤对比学习全局信息数据稀疏    
Abstract:

Existing collaborative filtering models based on the graph neural network (GNN) suffer from noise and data sparsity in the original graph. A novel graph neural network recommendation model (GICL) was proposed, employing singular value decomposition to retain the principal collaborative relationships from global information and suppress local noise. To capture latent relationships between nodes, representative embeddings were learned from both the graph structure and semantic space as augmented neighbors, and contrastive learning tasks were constructed based on these expanded neighbors. Specifically, a structural contrastive view was created by aggregating homogeneous node information using GNN, while a semantic contrastive view was constructed by partitioning the original graph into semantic subgraphs and using their prototypes. The graph collaborative filtering task was jointly trained with two contrastive auxiliary tasks to alleviate the data sparsity issue. Experimental results on four public datasets demonstrate that the GICL consistently outperforms many mainstream recommendation models.

Key words: graph neural network (GNN)    collaborative filtering    contrastive learning    global information    data sparsity
收稿日期: 2025-02-14 出版日期: 2026-02-03
CLC:  TP 393  
基金资助: 国家自然科学基金资助项目(62071323);天津市自然科学基金资助项目(22JCZDJC00220).
通讯作者: 李锵     E-mail: W747867298@163.com;liqiang@tju.edu.cn
作者简介: 王彦乐(2000—),男,硕士生,从事推荐算法研究. orcid.org/0009-0005-4446-1102. E-mail:W747867298@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王彦乐
张瑞峰
李锵

引用本文:

王彦乐,张瑞峰,李锵. 融合全局信息和对比学习的图神经网络推荐模型[J]. 浙江大学学报(工学版), 2026, 60(2): 351-359.

Yanle WANG,Ruifeng ZHANG,Qiang LI. Graph neural network recommendation model integrating global information and contrastive learning. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 351-359.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.013        https://www.zjujournals.com/eng/CN/Y2026/V60/I2/351

图 1  融合全局信息和对比学习的图神经网络推荐模型的总体框架
图 2  局部加权平滑机制在单次迭代中的核心操作
名称用户数项目数交互数稠密度
ML-1M6 0403 629836 4780.038 16
Yelp45 47830 7091 777 7650.001 27
Books58 14558 0522 517 4370.000 75
Gowalla29 85940 9891 027 4640.000 84
表 1  数据集的基本信息
数据集模型Recall@10NDCG@10Recall@20NDCG@20Recall@50NDCG@50
ML-1MNGCF0.184 60.252 80.274 10.261 40.434 10.305 5
LightGCN0.187 60.251 40.279 60.262 00.446 90.309 1
SGL0.188 80.252 60.284 80.264 90.448 70.311 1
SimGCL0.205 20.272 60.298 80.281 50.451 50.328 2
NCL0.204 80.272 20.302 50.283 20.462 80.329 2
AdaGCL0.207 20.274 50.301 20.286 80.466 20.329 5
GraphAug0.206 00.273 20.303 40.284 30.468 60.330 0
GICL0.210 30.277 30.304 40.287 90.470 60.333 9
η/%+1.50+1.02+0.33+0.38+0.43+1.18
YelpNGCF0.063 00.044 60.102 60.056 70.186 40.078 4
LightGCN0.073 00.052 00.116 30.065 20.201 60.087 5
SGL0.083 30.060 10.128 80.073 90.214 00.096 4
SimGCL0.089 60.065 80.130 40.081 00.209 80.101 8
NCL0.091 20.066 20.132 60.081 30.224 70.104 8
AdaGCL0.090 20.067 30.131 20.082 20.221 30.102 5
GraphAug0.092 20.068 20.137 70.081 70.224 00.104 2
GICL0.095 80.070 40.143 40.084 20.233 20.107 4
η/%+3.90+3.23+4.14+2.43+3.78+2.48
BooksNGCF0.061 70.042 70.097 80.053 70.169 90.072 5
LightGCN0.079 70.056 50.120 60.068 90.201 20.089 9
SGL0.089 80.064 50.133 10.077 70.215 70.099 2
SimGCL0.092 40.065 60.133 80.082 00.215 80.100 9
NCL0.093 00.066 40.137 70.081 20.216 40.101 7
AdaGCL0.094 20.067 20.134 60.082 80.217 70.102 3
GraphAug0.093 70.068 20.138 10.081 50.217 00.103 2
GICL0.098 90.071 50.146 40.085 90.230 70.108 2
η/%+4.99+4.84+6.01+3.74+5.97+4.84
GowallaNGCF0.119 20.085 20.175 50.101 30.281 10.127 0
LightGCN0.136 20.087 60.197 60.115 20.304 40.141 4
SGL0.146 50.104 80.208 40.122 50.319 70.149 7
SimGCL0.147 20.105 20.200 50.123 20.319 80.150 8
NCL0.148 20.106 10.211 80.125 30.322 90.153 1
AdaGCL0.149 10.108 20.212 70.127 50.323 80.152 2
GraphAug0.151 20.107 30.213 20.126 50.325 40.154 1
GICL0.156 70.113 90.220 50.131 80.332 70.159 6
η/%+3.64+5.27+3.42+3.37+2.24+3.57
表 2  不同推荐模型在4个公开数据集上的性能参数对比
模型图卷积数据增强对比学习损失
GraphAug$ O\left(2M\left| E\right| Ld\right) $$ O\left(\left| E\right| {d}^{2}\right) $$ O\left(BSd\right) $
AdaGCL$ O\left(2\left| E\right| Ld\right) $$ O\left(\left| E\right| L{d}^{2}\right) $$ O\left(LBSd\right) $
NCL$ O\left(2\left| E\right| Ld\right) $$ O\left(B(S+{K}_{\text{m}})d\right) $
GICL$ O\left(2\left| E\right| Ld\right) $$ O\left(B(S+{K}_{\text{S}}+\overline{N}{L}_{\text{W}})d\right) $
表 3  不同推荐模型的时间复杂度对比
图 3  推荐模型及其变体在2个公开数据集上的性能参数对比
图 4  奇异值分解模块在Gowalla数据集上的消融实验结果
图 5  不同子图数量对推荐模型性能的影响
图 6  对比任务权重对推荐模型性能的影响
图 7  不同推荐模型的项目嵌入分布的可视化
1 LI Y, LIU K, SATAPATHY R, et al Recent developments in recommender systems: a survey[J]. IEEE Computational Intelligence Magazine, 2024, 19 (2): 78- 95
2 ALJUNID M F, MANJAIAH D H, HOOSHMAND M K, et al A collaborative filtering recommender systems: survey[J]. Neurocomputing, 2025, 617: 128718
doi: 10.1016/j.neucom.2024.128718
3 KOREN Y, BELL R, VOLINSKY C Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42 (8): 30- 37
4 WANG X, HE X, WANG M, et al. Neural graph collaborative filtering [C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019: 165–174.
5 HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2020: 639–648.
6 PENG S, SUGIYAMA K, MINE T. SVD-GCN: a simplified graph convolution paradigm for recommendation [C]// Proceedings of the 31st ACM International Conference on Information & Knowledge Management. Atlanta: ACM, 2022: 1625–1634.
7 SUN J, ZHANG Y, MA C, et al. Multi-graph convolution collaborative filtering [C]// Proceedings of the IEEE International Conference on Data Mining. Beijing: IEEE, 2020: 1306–1311.
8 WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. [S.l.]: ACM, 2021: 726–735.
9 YU J, YIN H, XIA X, et al. Are graph augmentations necessary? : simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid: ACM, 2022: 1294–1303.
10 CHEN J, LI H, ZHANG X, et al SR-HetGNN: session-based recommendation with heterogeneous graph neural network[J]. Knowledge and Information Systems, 2024, 66 (2): 1111- 1134
doi: 10.1007/s10115-023-01986-4
11 LIN Z, TIAN C, HOU Y, et al. Improving graph collaborative filtering with neighborhood-enriched contrastive learning [C]// Proceedings of the ACM Web Conference 2022. [S.l.]: ACM, 2022: 2320–2329.
12 LI X, TIAN Y, DONG B, et al MD-GCCF: multi-view deep graph contrastive learning for collaborative filtering[J]. Neurocomputing, 2024, 590: 127756
doi: 10.1016/j.neucom.2024.127756
13 RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [EB/OL]. (2012–05–09)[2025–02–14]. https://arxiv.org/pdf/1205.2618.
14 GUTMANN U M, HYVÄRINEN A. Noise-contrastive estimation: a new estimation principle for unnormalized statistical models [C]// Proceedings of the 13th International Conference on Artificial Intelligence and Statistics. Sardinia: [s.n.], 2010: 297–304.
15 LIN S, LIU C, ZHOU P, et al Prototypical graph contrastive learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35 (2): 2747- 2758
doi: 10.1109/TNNLS.2022.3191086
16 HARPER F M, KONSTAN J A The MovieLens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19
17 CHEN J, GUAN H, LI H, et al. PACIFIC: enhancing sequential recommendation via preference-aware causal intervention and counterfactual data augmentation [C]// Proceedings of the 33rd ACM International Conference on Information and Knowledge Management. Boise: ACM, 2024: 249–258.
18 CHEN J, ZHANG F, LI H, et al EMPNet: an extract-map-predict neural network architecture for cross-domain recommendation[J]. World Wide Web, 2024, 27 (2): 12
doi: 10.1007/s11280-024-01240-z
19 LIU Y, XIA L, HUANG C. SelfGNN: self-supervised graph neural networks for sequential recommendation [C]// Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. Washington DC: ACM, 2024: 1609–1618.
20 JIANG Y, HUANG C, HUANG L. Adaptive graph contrastive learning for recommendation [C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Long Beach: ACM, 2023: 4252–4261.
[1] 谢涛,葛慧丽,陈宁,汪晓锋,李延松,黄晓峰. 知识嵌入增强的对比推荐模型[J]. 浙江大学学报(工学版), 2026, 60(1): 90-98.
[2] 黄文湖,赵邢,谢亮,梁浩然,梁荣华. 基于对比学习的声源定位引导视听分割模型[J]. 浙江大学学报(工学版), 2025, 59(9): 1803-1813.
[3] 侯越,李前辉,袁鹏,张鑫,王甜甜,郝紫微. 基于对比学习的可扩展交通图像自动标注方法[J]. 浙江大学学报(工学版), 2025, 59(8): 1634-1643.
[4] 胡明志,孙俊,杨彪,常开荣,杨俊龙. 基于CNN和Transformer聚合的遥感图像超分辨率重建[J]. 浙江大学学报(工学版), 2025, 59(5): 938-946.
[5] 陈珂,张文浩. 基于对比学习的零样本对象谣言检测[J]. 浙江大学学报(工学版), 2024, 58(9): 1790-1800.
[6] 梁龙学,贺成龙,吴小所,闫浩文. 全局信息提取与重建的遥感图像语义分割网络[J]. 浙江大学学报(工学版), 2024, 58(11): 2270-2279.
[7] 王慧欣,童向荣. 融合知识图谱的推荐系统研究进展[J]. 浙江大学学报(工学版), 2023, 57(8): 1527-1540.
[8] 张京京,张兆功,许鑫. 融合图增强和采样策略的图卷积协同过滤模型[J]. 浙江大学学报(工学版), 2023, 57(2): 243-251.
[9] 周天琪,杨艳,张继杰,殷少伟,郭增强. 基于无负样本损失和自适应增强的图对比学习[J]. 浙江大学学报(工学版), 2023, 57(2): 259-266.
[10] 郑黄河,黄志球,李伟湋,喻垚慎,王永超. 基于自然近邻与协同过滤的API推荐方法[J]. 浙江大学学报(工学版), 2022, 56(3): 494-502.
[11] 许佳辉,王敬昌,陈岭,吴勇. 基于图神经网络的地表水水质预测模型[J]. 浙江大学学报(工学版), 2021, 55(4): 601-607.
[12] 李诺,郭斌,刘琰,景瑶,於志文. 神经协同过滤智能商业选址方法[J]. 浙江大学学报(工学版), 2019, 53(9): 1788-1794.
[13] 董立岩,金佳欢,方塬程,王越群,李永丽,孙铭会. 基于非负矩阵分解的Slope One算法[J]. 浙江大学学报(工学版), 2019, 53(7): 1349-1353.
[14] 王红霞,陈健,程艳芬. 采用评论挖掘修正用户评分的改进协同过滤算法[J]. 浙江大学学报(工学版), 2019, 53(3): 522-532.
[15] 厉小军,柳虹,施寒潇,朱柳青,张亚辉. 基于深度学习的课程推荐模型[J]. 浙江大学学报(工学版), 2019, 53(11): 2139-2145.