| 计算机技术与控制工程 |
|
|
|
|
| 基于深度霍夫投票的建筑点云轻量级表面重建 |
陈佳舟1( ),朱肖航1,徐阳辉1,高崟2,3,鲁一慧4,毛真4,李胜龙4,章超权2 |
1. 浙江工业大学 计算机科学与技术学院,浙江 杭州 310023 2. 莫干山地信实验室,浙江 德清 313200 3. 国家基础地理信息中心,北京 100830 4. 山东省国土测绘院,山东 济南 250102 |
|
| Lightweight surface reconstruction method for building point clouds based on deep Hough voting |
Jiazhou CHEN1( ),Xiaohang ZHU1,Yanghui XU1,Yin GAO2,3,Yihui LU4,Zhen MAO4,Shenglong LI4,Chaoquan ZHANG2 |
1. College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China 2. Moganshan Geospatial Information Laboratory, Deqing 313200, China 3. National Geomatics Center of China, Beijing 100830, China 4. Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250102, China |
引用本文:
陈佳舟,朱肖航,徐阳辉,高崟,鲁一慧,毛真,李胜龙,章超权. 基于深度霍夫投票的建筑点云轻量级表面重建[J]. 浙江大学学报(工学版), 2026, 60(2): 341-350.
Jiazhou CHEN,Xiaohang ZHU,Yanghui XU,Yin GAO,Yihui LU,Zhen MAO,Shenglong LI,Chaoquan ZHANG. Lightweight surface reconstruction method for building point clouds based on deep Hough voting. Journal of ZheJiang University (Engineering Science), 2026, 60(2): 341-350.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2026.02.012
或
https://www.zjujournals.com/eng/CN/Y2026/V60/I2/341
|
| 1 |
LUO H, ZHANG J, LIU X, et al Large-scale 3D reconstruction from multi-view imagery: a comprehensive review[J]. Remote Sensing, 2024, 16 (5): 773
doi: 10.3390/rs16050773
|
| 2 |
于海洋, 封顺天, 崔立鹏 面向城市数字孪生的多尺度三维建模方法研究[J]. 电子技术应用, 2022, 48 (7): 78- 80 YU Haiyang, FENG Shuntian, CUI Lipeng Research on multi-scale 3D modeling method for urban digital twin[J]. Application of Electronic Technique, 2022, 48 (7): 78- 80
|
| 3 |
SCHNABEL R, WAHL R, KLEIN R Efficient RANSAC for point-cloud shape detection[J]. Computer Graphics Forum, 2007, 26 (2): 214- 226
doi: 10.1111/j.1467-8659.2007.01016.x
|
| 4 |
RABBANI T, VAN DEN HEUVEL F A, VOSSELMANN G Segmentation of point clouds using smoothness constraint[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2006, 36 (5): 248- 253
|
| 5 |
QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space [EB/OL]. (2017−06−07)[2024−03−14]. https://arxiv.org/pdf/1706.02413.
|
| 6 |
WANG R, HUANG S, YANG H. Building3D: an urban-scale dataset and benchmarks for learning roof structures from point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris: IEEE, 2024: 20019–20029.
|
| 7 |
YANG G, XUE F, ZHANG Q, et al. UrbanBIS: a large-scale benchmark for fine-grained urban building instance segmentation [C]// Proceedings of the ACM SIGGRAPH 2023 Conference Proceedings. Los Angeles: ACM, 2023: 1–11.
|
| 8 |
PETERS R, DUKAI B, VITALIS S, et al Automated 3D reconstruction of LoD2 and LoD1 models for all 10 million buildings of the Netherlands[J]. Photogrammetric Engineering and Remote Sensing, 2022, 88 (3): 165- 170
doi: 10.14358/PERS.21-00032R2
|
| 9 |
NAN L, WONKA P. PolyFit: polygonal surface reconstruction from point clouds [C]// Proceedings of the IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2372–2380.
|
| 10 |
BOUZAS V, LEDOUX H, NAN L Structure-aware building mesh polygonization[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 432- 442
doi: 10.1016/j.isprsjprs.2020.07.010
|
| 11 |
HUANG J, STOTER J, PETERS R, et al City3D: large-scale building reconstruction from airborne LiDAR point clouds[J]. Remote Sensing, 2022, 14 (9): 2254
doi: 10.3390/rs14092254
|
| 12 |
BAUCHET J P, LAFARGE F City reconstruction from airborne lidar: a computational geometry approach[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, 4: 19- 26
|
| 13 |
CHEN Z, SHI Y, XIONG Z, et al. Polyhedron-based graph neural network for compact building model reconstruction [C]// Proceedings of 2023 IEEE International Geoscience and Remote Sensing Symposium. Pasadena: IEEE, 2023: 923–926.
|
| 14 |
CHEN Z, SHI Y, NAN L, et al PolyGNN: polyhedron-based graph neural network for 3D building reconstruction from point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2024, 218: 693- 706
doi: 10.1016/j.isprsjprs.2024.09.031
|
| 15 |
HE X, LV C, HUANG P, et al. WindPoly: polygonal mesh reconstruction via winding numbers [C]// Computer Vision – ECCV 2024. [S.l.]: Springer, 2024: 294–311.
|
| 16 |
HUANG S, WANG R, GUO B, et al. PBWR: parametric-building-wireframe reconstruction from aerial LiDAR point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2024: 27778–27787.
|
| 17 |
LI L, SONG N, SUN F, et al Point2Roof: end-to-end 3D building roof modeling from airborne LiDAR point clouds[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 193: 17- 28
doi: 10.1016/j.isprsjprs.2022.08.027
|
| 18 |
JAVEED M A, GHAFFAR M A, ASHRAF M A, et al Lane line detection and object scene segmentation using otsu thresholding and the fast Hough transform for intelligent vehicles in complex road conditions[J]. Electronics, 2023, 12 (5): 1079
doi: 10.3390/electronics12051079
|
| 19 |
SYED M H, KUMAR S. Road lane line detection based on ROI using Hough transform algorithm [C]// Proceedings of Third International Conference on Computing, Communications, and Cyber-Security. Singapore: Springer, 2023: 567–580.
|
| 20 |
MATARNEH S, ELGHAISH F, AL-GHRAIBAH A, et al An automatic image processing based on Hough transform algorithm for pavement crack detection and classification[J]. Smart and Sustainable Built Environment, 2025, 14 (1): 1- 22
doi: 10.1108/SASBE-01-2023-0004
|
| 21 |
QI C R, LITANY O, HE K, et al. Deep Hough voting for 3D object detection in point clouds [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019: 9276–9285.
|
| 22 |
ZHANG J Q, DUAN H B, CHEN J L, et al HoughLaneNet: lane detection with deep Hough transform and dynamic convolution[J]. Computers and Graphics, 2023, 116: 82- 92
|
| 23 |
ZHAO H, JIANG L, JIA J, et al. Point transformer [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2022: 16239–16248.
|
| 24 |
LI J, ZHOU J, XIONG Y, et al. An adjustable farthest point sampling method for approximately-sorted point cloud data [C]// Proceedings of the IEEE Workshop on Signal Processing Systems. Rennes: IEEE, 2022: 1–6.
|
| 25 |
HU J, SHEN L, SUN G. Squeeze-and-excitation networks [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 7132–7141.
|
| 26 |
Republic of Estonia Land and Spatial Development Board. Building 3D model data [EB/OL]. [2024−04−15]. https://geoportaal.maaamet.ee/eng/Download-3D-data-p837.html.
|
| 27 |
DONG L, XIAO Y, LI Y, et al A collision detection algorithm based on sphere and EBB mixed hierarchical bounding boxes[J]. IEEE Access, 2024, 12: 62719- 62729
|
| 28 |
WU M, SUN M, ZHANG F, et al A fault detection method of electric vehicle battery through Hausdorff distance and modified Z-score for real-world data[J]. Journal of Energy Storage, 2023, 60: 106561
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|