| 交通工程、土木工程 |
|
|
|
|
| 面向动态交通流量预测的自适应图注意Transformer |
刘宇轩1,2( ),刘毅志1,2,*( ),廖祝华1,2,邹正标1,2,汤璟昕1,2 |
1. 湖南科技大学 计算机科学与工程学院,湖南 湘潭 411201 2. 湖南科技大学 服务计算与软件服务新技术湖南省重点实验室,湖南 湘潭 411201 |
|
| Adaptive graph attention Transformer for dynamic traffic flow prediction |
Yuxuan LIU1,2( ),Yizhi LIU1,2,*( ),Zhuhua LIAO1,2,Zhengbiao ZOU1,2,Jingxin TANG1,2 |
1. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China 2. Hunan Key Laboratory for Service Computing and Novel Software Technology, Hunan University of Science and Technology, Xiangtan 411201, China |
引用本文:
刘宇轩,刘毅志,廖祝华,邹正标,汤璟昕. 面向动态交通流量预测的自适应图注意Transformer[J]. 浙江大学学报(工学版), 2025, 59(12): 2585-2592.
Yuxuan LIU,Yizhi LIU,Zhuhua LIAO,Zhengbiao ZOU,Jingxin TANG. Adaptive graph attention Transformer for dynamic traffic flow prediction. Journal of ZheJiang University (Engineering Science), 2025, 59(12): 2585-2592.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.12.013
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I12/2585
|
| 1 |
NAHELIYA B, REDHU P, KUMAR K A review on developments in evolutionary computation approaches for road traffic flow prediction[J]. Archives of Computational Methods in Engineering, 2025, 32 (3): 1499- 1523
doi: 10.1007/s11831-024-10189-1
|
| 2 |
GOMES B, COELHO J, AIDOS H A survey on traffic flow prediction and classification[J]. Intelligent Systems with Applications, 2023, 20: 200268
doi: 10.1016/j.iswa.2023.200268
|
| 3 |
ZHANG S, TONG H, XU J, et al Graph convolutional networks: a comprehensive review[J]. Computational Social Networks, 2019, 6 (1): 11
doi: 10.1186/s40649-019-0069-y
|
| 4 |
SUN C, LI C, LIN X, et al Attention-based graph neural networks: a survey[J]. Artificial Intelligence Review, 2023, 56 (2): 2263- 2310
|
| 5 |
LI Y, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting [C]// 6th International Conference on Learning Representations. Vancouver: MIT Press, 2018: 1−16.
|
| 6 |
ZHAO L, SONG Y, ZHANG C, et al T-GCN: a temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21 (9): 3848- 3858
doi: 10.1109/TITS.2019.2935152
|
| 7 |
YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting [C]// 27th International Joint Conference on Artificial Intelligence. Stockholm: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634−3640.
|
| 8 |
ZUO J, ZEITOUNI K, TAHER Y, et al Graph convolutional networks for traffic forecasting with missing values[J]. Data Mining and Knowledge Discovery, 2023, 37 (2): 913- 947
doi: 10.1007/s10618-022-00903-7
|
| 9 |
SHIN Y, YOON Y PGCN: progressive graph convolutional networks for spatial–temporal traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25 (7): 7633- 7644
doi: 10.1109/TITS.2024.3349565
|
| 10 |
YU W, HUANG X, QIU Y, et al GSTC-Unet: a U-shaped multi-scaled spatiotemporal graph convolutional network with channel self-attention mechanism for traffic flow forecasting[J]. Expert Systems with Applications, 2023, 232: 120724
doi: 10.1016/j.eswa.2023.120724
|
| 11 |
XU M, DAI W, LIU C, et al. Spatial-temporal transformer networks for traffic flow forecasting [EB/OL]. (2021−05−29). https://arxiv.org/abs/2001.02908.pdf.
|
| 12 |
JIANG J, HAN C, ZHAO W X, et al PDFormer: propagation delay-aware dynamic long-range transformer for traffic flow prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37 (4): 4365- 4373
doi: 10.1609/aaai.v37i4.25556
|
| 13 |
WU H, XU J, WANG J, et al Autoformer: decomposition transformers with auto-correlation for long-term series forecasting[J]. Advances in Neural Information Processing Systems, 2021, 34: 22419- 22430
|
| 14 |
BAI J, ZHU J, SONG Y, et al A3T-GCN: attention temporal graph convolutional network for traffic forecasting[J]. ISPRS International Journal of Geo-Information, 2021, 10 (7): 485
doi: 10.3390/ijgi10070485
|
| 15 |
REN Q, LI Y, LIU Y Transformer-enhanced periodic temporal convolution network for long short-term traffic flow forecasting[J]. Expert Systems with Applications, 2023, 227: 120203
doi: 10.1016/j.eswa.2023.120203
|
| 16 |
GAO M, DU Z, QIN H, et al Dynamic multi-scale spatial-temporal graph convolutional network for traffic flow prediction[J]. Knowledge-Based Systems, 2024, 305: 112586
doi: 10.1016/j.knosys.2024.112586
|
| 17 |
CAI W, LIANG Y, LIU X, et al MSGNet: learning multi-scale inter-series correlations for multivariate time series forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38 (10): 11141- 11149
doi: 10.1609/aaai.v38i10.28991
|
| 18 |
LUO Q, HE S, HAN X, et al LSTTN: a long-short term transformer-based spatiotemporal neural network for traffic flow forecasting[J]. Knowledge-Based Systems, 2024, 293: 111637
doi: 10.1016/j.knosys.2024.111637
|
| 19 |
WANG B, WANG J ST-MGAT: spatio-temporal multi-head graph attention network for Traffic prediction[J]. Physica A: Statistical Mechanics and its Applications, 2022, 603: 127762
doi: 10.1016/j.physa.2022.127762
|
| 20 |
汪鸣, 彭舰, 黄飞虎 基于多时间尺度时空图网络的交通流量预测模型[J]. 计算机科学, 2022, 49 (8): 40- 48 WANG Ming, PENG Jian, HUANG Feihu Multi-time scale spatial-temporal graph neural network for traffic flow prediction[J]. Computer Science, 2022, 49 (8): 40- 48
|
| 21 |
HAN L, DU B, SUN L, et al. Dynamic and multi-faceted spatio-temporal deep learning for traffic speed forecasting [C]// 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. [S. l. ]: ACM, 2021: 547−555.
|
| 22 |
HUANG L, ZHU F, LI Z. Trendformer: trend adaptive transformer for traffic flow prediction [C]// 5th International Conference on Data Science and Information Technology. Shanghai: IEEE, 2022: 1–6.
|
| 23 |
邹正标, 刘毅志, 廖祝华, 等 动态交通流量预测的时空注意力图卷积网络[J]. 山东大学学报: 工学版, 2024, 54 (5): 50- 61 ZOU Zhengbiao, LIU Yizhi, LIAO Zhuhua, et al Attention-based spatio-temporal graph convolutional network for dynamic traffic flow prediction[J]. Journal of Shandong University: Engineering Science, 2024, 54 (5): 50- 61
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|